EUROPEAN SPACE AGENCY
DIRECTORATE OF OPERATIONS AND INFRASTRUCTURE

SMP 2.0 C++ Mapping

EGOS-SIM-GEN-TN-0102

Issue 1 Revision 2

28 October 2005

esoc european space operations centre

This Page is Intentionally left Blank

Doc SMP 2.0 C++ Mapping Page 3 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2
ABSTRACT

This document contains the mapping of both the Component Model and the Metamodel to C++ for the
SMP 2.0 standard.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 4 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2
DOCUMENT APPROVAL

Prepared by Organisation Signature Date

Peter Fritzen VEGA 28 October 2005

Stephan Kranz VEGA

Peter Ellsiepen VEGA

Verified by Organisation Signature Date

Christine Dingeldey VEGA 28 October 2005
Approved by Organisation Signature Date

Niklas Lindman ESOC/OPS-GIC

File: SMP 2.0 Cpp Mapping - 1.2.doc

© EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 5 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2
DOCUMENT STATUS SHEET

1. Issue 2. Revision 3. Date 4. Reason for Change

0 Beta 1 13 April 2004 New document structure

0 Beta 2 24 May 2004 Mapping of metamodel to C++ added.

0 RC1 06 August 2004 Mapping updated for Release Candidate 1.

1 0 13 October 2004 Initial Release of SMP 2.0 Standard.

1 1 28 February 2005 First Update of SMP 2.0 Standard.

1 2 28 October 2005 Second Update of SMP 2.0 Standard.

© EUROPEAN SPACE AGENCY, 2005

File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 6 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1

Date 28 October 2005 Rev 2

DOCUMENT CHANGE RECORD

DOCUMENT CHANGE RECORD DCINO N/A

Changes from DATE 28 October 2005

SMP 2.0 C++ Mapping Issue 1 Revision 1 to

SMP 2.0 C++ Mapping Issue 1 Revision 2 ORIGINATOR SMP CCB
APPROVED BY | Niklas Lindman

1. PAGE | 2. PARAGRAPH | 3.ISSUE 4. CHANGES MADE

14 1.4 46 SMP Handbook and Alpha Specification moved from
Applicable Documents to Reference Documents.

15 2.2.1 8 SGI/IRIX added.

21 3 See AD-3 Updated according to changes of Component Model (see
[AD-3]).

21 3.1 30 Inheritance of exceptions from Smp: : Exception
added.

49 4 See AD-3 Updated according to changes of Simulation Services (see
[AD-3]).

57 5 See [AD-2] | Updated according to changes of Metamodel (see [AD-2]).

60 532 4 Static function/method for registration of user-defined
value types added.

62 533 14 Feature and static removed.

65 5421 4 Static method for registration of user-defined class added.

70 5.5 Package added to Metamodel, and dedicated section 7
replaced.

70 5.5.1.1 5 Initialize () method replaced by
Initialise$Package.Name$, with additional
Initialise () for shared object.

73 6 32 Publication of Property added.

73 6.1 -3 Registration of types changed to use Uuid.

81 6.1.5.5 31 Additional t ype parameter for primitive type added.

82 6.1.5.6 31 Additional type parameter for primitive type added.

86 6.2 -3 Publication changed to use Uuid.

88 6.2.1.14 32 Publication of Property added.

File: SMP 2.0 Cpp Mapping - 1.2.doc

© EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 7 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2
TABLE OF CONTENTS
ABSTRACT 3
1. INTRODUCTION 13
Lol PUIPOSE ettt ettt ettt e b ettt ea e s bt e bt e bt et et sat e bt e nae e bt et ebtesbrenbeen 13
1.2 SCOPE ettt et h e h ettt e h e bbbt e bt et et sht e bt ae et e et eateearenbeen 13
1.3 Definitions, acronyms and abbreviations........cc..eeuerierierienieeniinienienitenieee ettt siee et eiresieesieens 13
L4 RELEIEIICESoouiiniiiiiiiciiecce et st s b e e s 14
1.4.1 APPLCADIE DOCUMENLS......eeuiiiiiiiiiiiiiterieeicee ettt ettt sttt et et eat e st sbee b e beenaes 14
1.4.2 Reference DOCUMENLSc..ooviiiiiiiiieiiiteeie ettt ettt ettt e sate e sat e sabeesateesaaeenaeeas 14
L5 OVEIVIEW ettt et b et e b e e ab e e b et e a bt e bt e e s st e e bt e e sabe e bt e e sabeenbeeesabeesnteesaneeaeeas 14
2. PLATFORM CONSIDERATIONS 15
2.1 ANSI/ISO CH ittt sttt et ettt b e st b ettt b sa e bt et ea b et et e be st nes 15
2.2 DA TYPES ettt ettt e s et et e h et s st ae e n et ane e e saeens 15
22,1 SIMPLE TYPLS wnreentieiiieiteteeteet ettt ettt s b e bttt ettt st st e bttt et e at e e bbb e b bt 15
2.2.2 SImPLe UNION TYPE...oooviiiiiiiiiiiieiiestesttet ettt sttt et ettt ae e e 16
2.2.2.1 SIMPLETYPEKING ...ttt st st 16
2222 SIMPLETYPEVAIUEeniiiiiiiiiietee ettt st 16
2223 AYSTINPLE .ottt st b ettt et st be et enaes 17
2224 ADNYSIMPLEAITAY ..ottt ettt et ettt e at e s bt e s bt e be e beesbesaaesaeesbeenne 17
2.2.3 Universally Unique Identifiers...........ccooiiiiiiiiiiiiiiiiieieeccce e 17
224 SHIIIIES ettt et et st st a ettt e e h e neeneeanes 17
2,25 COIECHIONS ..enetieniieiiiteeiteeeite ettt ettt et ettt e st e e s bt e sab e e bt e e sabe e bt e e sabeesateesabeenbeesabeennteesaseenateas 18
2.3 IIEEITACES .eeeneieeiieeeie ettt ettt et sh e st e h e e ab e e h bt e st e e bt e e st e e nat e e sabeennteas 18
2.4 TNRETILAIICE ..ottt ettt ettt e st esh e e s ab e e sat e e s ab e e sat e e sab e e at e e s ab e e bt e e s abeenateesabeennteas 18
2.5 DEPIOYIMENL ...uiiuiiiiiiiiieiie ittt ettt et et ettt et st sae et et e eaneeanesaeens 18
2.6 Performance and Tradeoffs...........cccoeiriiiiiiiiiiiniii e 18
3. COMPONENT MODEL 21
Bi1 EXCEPLIONS vttt ettt ettt sttt ettt et e bt e s bt e bt e bt e bt e st e sbe e sae e bt e bt et ea b e ebaesbnenbeens 21
3.1.1 InvalidODBJECTINAINIEcoueeuiieiiieiienitetteieete ettt ettt sb et e et st st e saeenbeeate et e sanesbeens 22
3.1.2 DUPHCAIENAINE ..ottt ettt ettt sttt ettt et e bt e sbe e bt e bt esbesatesbtesbee bt enteeasesanesbeens 22
313 INVAIIAANYTYPE .ottt sttt et ettt b et et et st sat e sbe e bt et et esanesbeens 23
3.1.4 InvalidODBJECITYPE «..coveemiieniieiieeee ettt e e st et e 23
3.2 Objects and COMPONENLSoeuveriieriieiieieeiereenieete et et eeeeeesteesteesseeseenessnesaeesseeseenseenseesnesnnesseens 24
3201 ODBJEOLS ceueeutenieieiert ettt ettt ettt ettt et s b ettt sa bt bt e a et e bt she bttt ae e b e 24
3.2.1.1 TODBJECL ...ttt sttt ettt sttt st ettt ae b nae e 24
32,2 COMPONEILS ..c.uveiiiiiiiiieiiettete et ettt et et e ae s e st e s ae e aeesseeaseesaessee st esseesnesanesaeesaeesseenneenseeanennnens 24
32.2.1 TCOMPONENL ...ttt ettt sttt sb e b et et e it s bt e sbee bt e beenees 24
3222 CompPOoNENtCOIIECION ...c..eeiuiiiiiiiiiriieieeteee ettt sttt ettt ettt sbe e 25
3223 MoOdelStateKindcouiiuiiiiiiiiiiie e s 25
3224 InvalidMOGEISTALE.........coiiuiiiiiiiiiieriieeet ettt st s 25
3.2.25 IIMEOAEL.....c..iiiiiiiiee ettt st s 26
3.2.2.6 MOAEICOIECHIONueiiiiteiieietee ettt st s e 26
3227 IS@IVICE ettt ettt st s e bt e et e s bt e et e s b e sabee e 26
3228 SEIVICECOIIECHIONeeiutiieiiieeite ettt ettt ettt ettt e e bt e bt e s bt e et e s bt e s bt e s bt e enaeeeanee 26
3.3 Component MEChANISINScouiiiiiiiiiiiiiiie ettt e et ae e en e eaaeeanesieens 27
3301 AZEIOZALION ..ottt ettt ettt et et et et e s sa e a e ean e an e e sanenn 27
33.1.1 TAGEIOGALE ...t et sttt et s 27
3.3.1.2 TRELETEICE ...ttt et sttt st e et e sabe e st e sbeesabee e 27
33.1.3 ReferenCeCOIlECtION.coiiiiiiiiiiiicceccecee et s 27
3.3.2 COMPOSIEION..cnteeutiiiieiitentteteete ettt ettt ettt ettt b e e bt et eat e st b e s bt e bt e bt esbeeatesatesbeenbeenbeenteeanens 28
33.2.1 TCOMPOSILE ...ttt ettt ettt ettt sb e bttt ettt satesbee bt e beenees 28
3322 TCONLAINET ...ttt sttt s e 28
3323 ContaiNETCOIIECTIONveiieiiiiiieie ittt st s e 28
3.3.3 EVEILS ettt ettt s b e et bt e e bt e bt e e bt e s bt e e bt e st e e et e sbaeebeeeat 29

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 8 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1

Date 28 October 2005 Rev 2
3.3.3.1 TEVENESINK ..ottt e s e 29
3332 EventSinKCOIECIONcooviiiiiiiiiiiieiciice st 29
3333 TEVENESOUICE.....cviiiiiiieiieieiee sttt ettt st et 30
3334 EventSourCECOIIECTION.cco.ueiiuiiiieiiteeieet ettt ettt sttt et sbe e e s 31
334 DynamiC INVOCAIONcocuiiiiiiiiiiiiieiieti ettt et e s e 31
3341 IDYNamiCINVOCALION.couiriiiiieiieieeie ettt e e s s eas 31
3342 TREQUEST ...ttt ettt et e e ne e saee st e s e enneenneeas 33
3.3.5 PEISISIEIICE. ..eeiutiiiiieeiieet ettt ettt ettt et et e b et e st e bt e sab e e a bt e st e e nateesabeenaes 34
3.3.5.1 TPEISISE .ttt ettt ettt st e e ettt b e et s bt et sbaeeabee s 35
3352 IStOragEREAAET ...cueeitieiiiiieiteeee ettt sttt 35
33521 RESLOTE......oniiiiiieit ettt st s 36
3353 I HOTAZEWIILET ...ttt ettt et et sbte s et e e et e 36
3.3.53.1 SEOTE ..ttt sttt et 36
3.4 Model MEChANISINS.c.viiiiiiiiiiiiiiiieiieietite sttt sttt st st s s e 37
341 ENEIY POINES ...ttt ettt sttt et ettt st sbe e bt e et et st nae 37
34.1.1 TEDTIYPOINT...c..eiiiiiieiieieee ettt ettt e e s s st eane e 37
3412 EntryPOIntCOIECTION.oouiiiiiiieiieieeie ettt e s s s 37
3.5 Management INtEITACESc..cocuiriiiiiiiiic et 38
3.5.1 Managed COMPONENLS.....c..ccuiriirieiieiiett ettt ettt ettt ettt e bt et e e e eaaesaeesne e neeneeanesanenae 38
35.1.1 IMANAZEAODIECE. ...ttt ettt s s st 38
35.12 IManagedCOMPONENL..........cccueriiiriieiiiiiiie ettt ettt ettt e e ene s saeesaeeneesneenneeas 38
3.5.2 Managed Component MEChANISIMScocueriiriirienienieiienie ettt ettt 39
35.2.1 IManagedRELEIEICEoouiiriiiiieiieicec ettt st st 39
3522 IMANAZEACONLAINETc.eeriieiieiieieeteete ettt ettt ettt b e sb et et st sbeesbeenbeenaeenteeas 40
3523 TEVENTCONSUIMEToveuiiiiiiiniiiiiiieieeteit ettt sttt s s s e 40
3524 TEVENPIOVIET ..c.ooiiiiiiiiiiiiiiicceeeeee et s 41
3.5.3 Managed Model MEChaniSmSc..ccceeciiiiiiiieiieniieieeieeie ettt e s e 41
3531 IManagedMOdELcocuiiiiieiieieecee et e 41
3532 IEntryPointPUBLIShETccooiiiiiiei e 43
3.6 Simulation ENVIFONMENLScooiiiiiiiiiiiiiieiiieest ettt ettt e sab et esabe e bt e e sabeesateesaseenaees 43
3001 STMUIALOLS «.eeeiiiiieiieeiie ettt ettt e sat et e e bt e sat e e bt e e st e e sbt e e sabeenbbeesabeenbbeesabeenaes 43
3.6.1.1 SIMUIAtOTSTAtE KNeoeiiiiiiee et s 44
3.6.1.2 ISIMULALOT <.ttt st st s e 45
3.6.1.3 IDYNAMICSTMUIALOLcutiitiiiietieieecetc ettt et st sa e e ees 46
3.0.1.4 TFACKOTY cuteiieiiieeieeitete ettt ettt st b ettt ettt b e s bt e b e e bt et s bt sate s beenae e b et ean 46
3.6.1.5 FaCtOryCOIECTION ...ttt ettt ettt e e e et st sbe e s et eaeente e 47
3.6.2 PUDBLCALION ..ottt st st 47
4. SIMULATION SERVICES 49
4.1 MAandatOry SEIVICEScoceeruieriieiieiieiieitesie et et ettt e st esat e te et e e s e eaaesaeesae e b eesneeanesanesaeesaeenseenseenneens 49
BLL LOZEET .ot et e st a et e e ne s 49
4.1.1.1 T OZEOT .ttt ettt e e s s st eaneeas 49
4.1.1.2 Predefined Log Message Kindscccccooiiiiniiiiiiiiiiiiiecececcceeee e 50
412 TIME KEEPET.....eiouiiiiiiieiieeete ettt e et st st sttt et e 50
4.1.2.1 TTAMEKEEPET ...ttt et sttt b et ettt sbeesbe et eaeenteeas 50
4122 TIMEKINA ...ttt s s e 51
413 SCREAUIET ...t st 52
4.1.3.1 ISCREAUIET ...t s 52
4132 TTASK e et s 53
414 EVENE MANAZET ..c..tiiiiiiiiieieeieete ettt ettt ettt ettt ettt st sht e s bt e s bt et et eat e et esbaenbeebean 53
4.14.1 TEVENTIMANAZET ..ottt sttt ettt s sae s eneenneeas 53
4.14.2 Predefined Event Kindscooiiiiiiiiiiiiiite ettt ettt 55
4.2 OPHONAL SEIVICESveiuviiiiiiitietiete ettt ettt ettt sttt e r et e e e e aaesaae s e s e esseeanesanesaeesaeesseenneenneeas 56
4201 RESOIVET ittt ettt ettt e s e e bt e s ab e e bt e sa b e e bt e e sab e e bt e e bt e e baeesaeeeane 56
4.2.1.1 TRESOIVET ...ttt ettt ettt bttt e s b e e bt e s bt e et esabteeabeesabaeeanee s 56
5. METAMODEL 57
ST OVEIVIEW ittt sttt s ettt b e b e bt et a et b e sae e bt et eanenens 57
S.11 PIACEROLARTS .. e e 57

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 9 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1

Date 28 October 2005 Rev 2
5.1.2 Coloring and FOnt SCheMA........cociiiiiiiiiiiiiiiiiieietee e 57
5.1.3 Generation of type Identificationc..ccoceeveriiiriiniinienieeeec e 57
5.1.4 Optional and Selectable Code..........cociriiriiriiriiieiinieieeeeeee ettt 57
5.2 COT@ EIBIMENLSoeuiiiiiiiiiieiieeeite ettt ettt et ettt e st esat e st esat e e sab e e eat e e sab e e bt e e s abeenateesabeenateas 58
5.2.1 SIMPLE TYPES ettt e et s st et e 58
5.2.1.1 TAEIEITIET ..ottt ettt se bbbt e e nbesae 58
5.2.1.2 INAITIC ...ttt st ettt e st e s bt e sab e e sabeeeabeesabeeeabeesabeeeabeesabeeeaneenas 58
5.2.13 DIESCIIPLION ...ttt e sttt e 58
52,14 UUID ettt sttt ettt sttt ettt b e sa e bt ettt b b e 58
5.2.2 XML LINKS oottt s et 58
5.2.3 EIBIMENLS ..ottt e st 58
5.2.3.1 EIEIMENE ...ttt e s 58
5.2.32 Named EICMENL.........cccooiiiiiiiiiiiiicicicetcee ettt s 58
5233 DOCUIMENL ... ittt ettt sttt ae s b eae s 58
524 MEAALA ...oeiiiiiiiiiiiice e s 58
5.3 C0T8 TYPLS.uuieniieniieieee ettt et e sttt et et e st ae et et eaa e saeens 59
5.3l TP ettt et s st a et et eneene e 59
5.3.1.1 Visibility EIBMENTcc.coouiiiiiiiiiiieieeeeeeee ettt 59
5.3.12 Y e ettt e st e a ettt e neeanes 59
5.3.13 Language TYPE ..c..coveemiiiiie ittt 59
53.14 VALUE TYPC.. ettt ettt e e 59
5.3.1.5 Value REfEIENCE.oouiiiiiiiiiiiiei e s 59
5.3.2 VAlUE TYPES cuveeniieiiieiteeit ettt ettt ettt ettt et st et e b et ettt b e be e b enees 60
5.3.2.1 PrMItIVE TYPE oottt sttt ettt b e e 60
5.3.22 ENUMETAtION ...ttt sttt s 60
5.3.23 TR .ttt et sttt ettt e a e e bbbt e enaes 60
5.3.204 IO ..ottt bbbt st b ettt b e b 60
5.3.25 ATTAY ..ottt et e st a ettt e e ne e 61
5.3.2.6 SHIIIE ettt sttt ettt ettt ettt bbbt ettt e b e s et b e e at et ettt st b e eae it et eae b nae 61
5.3.2.7 SETUCTUTE ...ttt ettt ettt ettt ettt ettt et e bt et e e bt e bt e e bt e e bt e e bt e e bee s bt e eabte s beeenbee e beeebeesabeeenseesaree 62
5.33 Typed EIBMENLSccoiiiiiiiiiiiiiiie ettt e st e 62
5.3.3.1 FIELA .ttt ettt st sttt a e e 62
5332 OPCIALION ...ttt ettt ettt et et eb e s bt e bt e bt et eatesbeesb e e bt et e et e eabesbaesbeenbeenbeennes 62
5.3.3.2.1 PATamELETo.viiiiiiiciieiceie e e 63
5314 VALUES oo e et sa e s e 63
5.34.1 VLU ..ottt et s 63
5.3.42 STMPLE VALUE. ...ttt ettt st st bt et e et s 63
5.3.43 ATTAY VALUC....ceiiiiiiiiiceec ettt sttt ettt st sbe e bt e b enaes 64
5344 SHING VALUE ...t sttt e 64
5.3.4.5 SEIUCTUIE VAIUE ..ottt ettt ettt et bt e bt e s bt e e bt e s bt e esaeeeanee 64
5.345.1 FIEIA VALUC ..ottt sttt e 64
5.3.5 AUTIDULES .ottt ettt ettt et e bt e e sa bt e bt e s ab e e h bt e s a bt e e bt e e s ab e e bt e e sabe e ateesabeenate s 64
5.4 SMDL CatalOZUESccueeiuiiriiiiiiiieiieteee ettt et sttt ettt e s et e saee s e st e ne s e eaneeanesaeens 65
5.4.1 A Catalogue DOCUMENL.ccuiiiiiiiiiiiiieiteeeteee ettt st sttt ettt s sbe e b e 65
54.1.1 CALALOZUE ...ttt ettt et b et et st s bt s bt e sb e et et e bt et bee bt e beenaes 65
54.1.2 INAIMESPACE ...ttt sttt ettt ettt b e bt et et st saeesbeesbe et e et e e st e ebtesbeenbeenbeenees 65
SA.2 CIASSES wouveeiiieiieiieietete sttt sttt s e bttt sh e bt ettt ae st s ene et 65
54.2.1 LSS ..ttt e sttt e bttt s neeae s 65
5422 PrOPEILY ..ttt sttt ettt sttt e 66
54223 ASSOCTALION .uetieniteeitieiitee ettt ettt et e st e et e s bt e sab e e s bt e eabeesabeeeabeesabeesabeesabeesabeesabeesaneenas 66
543 REfEIENCE TYPES .eoiouiiiiiiieiieieee ettt st sttt et e 67
5431 REfETENCE TYPE ..ottt 67
5432 TNEETTACE .ttt et e st e sttt e st e s e e 67
5433 IMIOGEL ..ttt ettt sttt ettt et bt bt h et ettt benae 67
54331 ENtry POINT c...ooiiiiiee e e 69
54332 COMEANET ..ottt ettt st e bt et n et sae e b saeene 69
54333 Reference COIIECHIONc.ocuiriiiiiiiiiieicieietee e s 69
SA4 EVENLS oottt et e b s et 69
5.4.4.1 EVEIE TYPC .ttt ettt sttt ettt et sb e s bt e b e 69

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 10 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1

Date 28 October 2005 Rev 2
5442 EVENE SOUICE ...ttt st s e 69
5443 EVENt SINK .ottt 69
5.5 SMDL PaCKAZESeeeiiiieiieiieieete ettt ettt st sttt et ettt b e bt et 70
5.5.1 A Package DOCUMENL........c.cociiiiiiiiiieiiecee ettt e et 70
5.5.1.1 PACKAZE ...t e 70
55.12 IMPIEMENTALION ...ttt e s s s eas 71
6. PUBLICATION 73
6.1 TYPE REGISIIY .. cuiiiiiieee ettt sttt et e 73
B.1.1 I YD e et ettt et e s st esaeeneeaneeas 74
6.1.1.1 GEtSTMPIETYPE ..ttt ettt st s e st e e e e 75
6.1.1.2 GEtUUIA ...ttt sttt s et 75
6.1.1.3 PUDBLISI ..eie e e 75
6.1.2 TENUMETAtiONTYPE ..eooveeiiiiiiiieiieiieettet ettt ettt ettt et st saee bt e b e b et e 76
6.1.2.1 AQALILETAL ..ottt 77
6.1.3 ISHIUCTUIETYPE ettt ettt et ettt et e bt et et satesbeesbeenbeenbeenteean 77
6.1.3.1 AQAFIEIA ...ttt sttt ettt st st 78
6.1.4 TCLASSTYPE ..ottt ettt ettt e st en e sane e st esae s eaneeas 79
6.1.5 TTYPEREZISIIY ..ottt ettt e e s s st esae e eaneeas 79
6.1.5.1 AlreadyREZISEIEA.ccueieiiiiieiieiieicee ettt e 79
6.15.2 INOtREZISIEIEAcoeiiiieiieeieeeeee ettt e e s s st 79
6.1.5.3 GetType for SImpleTypeKind.........ccccociiiiiiiiniiiiiiieieeee e 81
6.1.5.4 GetType fOr UL ..c..coiuiiiiiiiiiiiieiteiteeeeeeetet ettt st 81
6.1.5.5 AQAFIOAL ...t s e 81
6.1.5.6 AAINTEZET ..ttt ettt et e b et et st sbtesae et eaeenteeas 82
6.1.5.7 AdAENUMETALION ...ttt sttt st s e 83
6.1.5.8 AQAAITAY .ottt ettt et ettt b e b e b e et et satesbeesbeenbeeaeenteean 83
6.1.5.9 AdASIIIINZ ...ttt ettt ettt ettt bbbttt b e sheebe et een 84
6.1.5.10 AdASIIUCIUTE ...ttt e e st et e e 84
6.1.5.11 AdACIASS ..ottt ettt ettt ettt et ettt bbb et be bt ebe et et enten 85
6.1.6 Pre-defined SImMPle TYPESc..ooiieiiiiiiieiieieeeee ettt et 85
6.2 Publication of Fields, Operations and Properties..........c.cccocveeeeviiriinienienieniieieeieneeseeeereeee e 86
60.2.1 TPUDIICALION ...eeitieiiie ittt ettt st et s bt et s e e e bt e s b e e e bt e sabeeebeeeabaeeneeeane 86
6.2.1.1 Publication using the Type ReZISIIYcocuiiiiriiniiiiiiiiiecieteee et 86
6.2.1.1.1 GEtTYPEREZISIIY ..veeneiiiieiiieieeee ettt ettt e 87
6.2.1.1.2 PUbBLish FIeld........ccviiiiiiiiiiiiiicicicc et 87
6.2.1.1.3 PUbLish OPerationcocueveeniiniieiinienienieecee ettt ettt e 88
6.2.1.14 PUDBLISh PrOPEItYcouviiiiiiiiiiieiieiteee ettt e 88
6.2.1.2 Direct PUDLICAIONcoueeuiiiiiiiiiiiciieiciccc st 89
6.2.1.2.1 Publish Array of SIMPIE tyPe......ccceevuieiiiiiiiiiieieeceec e e 89
6.2.1.2.2 Publish Array of user-defined type........cccccoeevieiiiiiiiiiinieicccceeeeee e 90
6.2.1.2.3 PUbLish SEIUCTUTE ..ot e 90
6.2.1.3 Overloaded Methods for fields of sSImple typescccoecueeieriiinieiieiiiiieeceeeceee 91
6.2.1.3.1 Publish Field of Char8 type........cccoecuieiiiiiiiiiiieeecececece e e 93
6.2.1.4 Convenience Methods...........cceouiiiiiiiiiiiiiiiienceteeee et s 94
6.2.2 TPUDBLISHOPEIALION «...ouveiniiiiiieiiieiiieiieeitet ettt ettt et e e ettt st st e nbe e b et e 95
6.2.2.1 Publish Parameterccooeiiiiiiiiiiiiiiicii e 95

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 11 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

LIST OF FIGURES AND TABLES

Figure 1-1: Three Parts of the SMP2 Platform Independent Model.............ccccoooiiiiiiiiiiniiniiniiiiccceeeeee 14
Figure 3-1: Simulation Environment State Diagram with State Transition Methods..........c.cccoceeiiiiiiiniinenen. 44
Figure 6-1: TType INEITACE.ooiiiiiiii ettt ettt et e 74
Figure 6-2: IEnumerationType INtErfacecccoiiiiiiiiiiiiiiiiiecee et 76
Figure 6-3: IStructur€Type INEITaCecc.eoiiriiiiiiiiiiiiiee ettt 78
Table 5-1: Mapping of the Visibility attribute to ISO/ANSI C++ Access Controlcoceveeveenieenienienieneennn. 59
Table 5-2: Type Modifier depending on type and dir€CtioNcoo.eevueriirienienienieieee sttt 63

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 12 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

This Page is Intentionally left Blank

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 13 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

1. INTRODUCTION

This document presents the mapping of the SMP2 Platform Independent Model (PIM) into a Platform
Specific Model (PSM) for the ISO/ANSI C++ platform as defined by the International Organization for
Standardization (ISO) and the American National Standards Institute (ANSI).

1.1 Purpose

This document unambiguously specifies how the mechanism introduced in the SMP 2.0 Component Model
(including Simulation Services) [AD-3] and SMP 2.0 Metamodel [AD-2] are mapped for the ANSI C++
programming language.

1.2 Scope

For all mechanisms defined already in the platform independent model, this document only provides a

mapping to C++. For those features marked as platform specific in the PIM, a C++ version is presented and
explained in detail.

1.3 Definitions, acronyms and abbreviations

AD Applicable Document

ANSI American National Standards Institute
DLL Dynamic Link Library

DSO Dynamic Shared Object

ESOC European Space Operations Centre
ISO International Organization for Standardization
N/A Not Applicable

(0N} Operating System

PIM Platform Independent Model

PSM Platform Specific Model

RD Reference Document

STL Standard Template Library

TBC To be confirmed

TBD To be defined

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page
Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

14 of 96
1
2

1.4 References

1.4.1 Applicable Documents
Applicable documents are denoted with AD-n where n is the number in the following list:

AD-1 SMP 2.0 Handbook
EGOS-SIM-GEN-TN-0099, Issue 1.2, 28-Oct-2005

AD-2 SMP 2.0 Metamodel
EGOS-SIM-GEN-TN-0100, Issue 1.2, 28-Oct-2005

AD-3 SMP 2.0 Component Model
EGOS-SIM-GEN-TN-0101, Issue 1.2, 28-Oct-2005

1.4.2 Reference Documents
Reference documents are denoted with RD-n where n is the number in the following list:

RD-1 Simulation Model Portability Handbook
EWP-2080, Issue 1.1, 31-Oct-2000

RD-2 SMP2 Alpha Specification
SIM-GST-TN-0045-TOS-GIC, Issue 1.0, 30-Dec-2003

1.5 Overview

This document presents a mapping of the SMP2 Component Model, Simulation Services and Metamodel

into the ISO/ANSI C++ programming language.

Generally, a platform mapping consists of three main parts:

1. A platform specific implementation of the SMP2 Component Model [AD-3, section 3].

2. A platform specific implementation of the SMP2 Simulation Services [AD-3, section 4].

3. A platform specific implementation of the SMP2 Metamodel elements [AD-2].

SMP?2 Simulation Services

SMP2 Metamodel
(Simulation Model Definition Language)

SMP2 Component Model

Figure 1-1: Three Parts of the SMP2 Platform Independent Model

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 15 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

1
2

2. PLATFORM CONSIDERATIONS

This section describes general considerations for the ANSI/ISO C++ platform mapping.

2.1 ANSI/ISO C++

This document describes the mapping of SMP2 to the ISO/ANSI C++ platform. In the following, we refer
to ISO/ANSI C++ simply as C++. Note that, strictly speaking, C++ is not a platform as such, but rather a
programming language. Therefore, we require certain base functionality (i.e. an implementation of the
SMP2 Component Model [AD-3]) that provides an environment in which SMP2 components can live, thus
turning the C++ language into a component platform.

2.2 Data Types

C++ provides most simple types needed for SMP2, except for signed and unsigned 64 bit integer types, and
for an “any” type (a variant). Further, C++ does not define a Universally Unique Identifier (UUID) type.

2.2.1 Simple Types

The following type definitions are used within this document.

namespace Smp

{
/// Character type that is used as well by strings.
typedef char Char8; ///< 8 bit character type.
/// Bool type that is either <code>true</code> or <code>false</code>.
typedef bool Bool; ///< Bool with true and false.
// Integer types
typedef signed char Int8; ///< 8 bit signed integer type.
typedef unsigned char UInt8; ///< 8 bit unsigned integer type.
typedef signed short Intl6; ///< 16 bit signed integer type.
typedef unsigned short UIntlé6; ///< 16 bit unsigned integer type.
typedef signed int Int32; ///< 32 bit signed integer type.
typedef unsigned int UInt32; ///< 32 bit unsigned integer type.
typedef int64 Int64; ///< 64 bit signed integer type.
typedef uinté64 UInt64; ///< 64 bit unsigned integer type.
// Floating point types
typedef float Float32; ///< 32 bit floating-point type.
typedef double Float64; ///< 64 bit floating-point type.
// Date and time types
typedef Int64 Duration; ///< Duration in Nanoseconds.
typedef Int64 DateTime; ///< Relative to MJD2000+0.5.

}

Please note that the definition of Int64 and UInt64 makes use of two platform specific types. Currently,
these are only defined for the Gnu compiler (gcc) on the Linux OS, for the C++ compiler on SGI/IRIX,
and for Microsoft Visual C++ on the Microsoft Windows OS.

#ifdef WIN32

typedef __int64 inté64; ///< 64 bit signed integer type.
typedef unsigned __inté64 uinté4; ///< 64 bit unsigned integer type.
#endif

#ifdef _ linux_

typedef int64_t int64; ///< 64 bit signed integer type.
typedef uint64_t uint64; ///< 64 bit unsigned integer type.
#endif

#ifdef __ sgi

typedef int64_t int64; ///< 64 bit signed integer type.
typedef uint64_t uint64; ///< 64 bit unsigned integer type.
#endif

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 16 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

1
2

For other operating systems (SUN Solaris, HPUX, etc), similar mappings may be needed. It is not even
guaranteed that every C++ implementation provides these two data types, as they are beyond the ANSI/ISO
specification.

2.2.2 Simple Union Type
Some of the interfaces defined in the SMP2 Component Model make use of the AnySimple type in their
CORBA IDL specification. In SMP2, this data type represents a type that can hold any of the simple types

defined above.

2.2.21 SimpleTypeKind

This type is an enumeration of the available simple types.

namespace Smp
{
/// Enumeration of simple type kinds (discriminator for AnySimple)
enum SimpleTypeKind
{
ST_None, ///< no type, e.g. for void.
ST_Charsg, ///< 8 bit character type.
ST_Bool, ///< 1 bit Bool type.
ST_Ints, ///< 8 bit signed integer type.
ST_UInt8, ///< 8 bit unsigned integer type.
ST_Intle, ///< 16 bit signed integer type.
ST_UIntle, ///< 16 bit unsigned integer type.
ST_Int32, ///< 32 bit signed integer type.
ST_UInt32, ///< 32 bit unsigned integer type.
ST_Int64, ///< 64 bit signed integer type.
ST_UInt64, ///< 64 bit unsigned integer type.
ST_Float32, ///< 32 bit single floating-point type.
ST_Float64, ///< 64 bit double floating-point type.
ST_Duration, ///< Duration in nanoseconds.
ST_DateTime ///< Point in time in nanoseconds.
}i
}

2222 SimpleTypeValue

This is a union that can hold a value of any of the simple types.

namespace Smp
{
/// Union of simple type values (value for AnySimple)
union SimpleTypeValue
{
Char8 char8value; ///< 8 bit character type.
Bool boolValue; ///< 1 bit Bool type.
Int8 int8Value; ///< 8 bit signed integer type.
UInt8 uInt8vValue; ///< 8 bit unsigned integer type.
Intlé intl6Value; ///< 16 bit signed integer type.
UIntlé6 ulntl6Value; ///< 16 bit unsigned integer type.
Int32 int32Value; ///< 32 bit signed integer type.
UInt32 ulnt32Value; ///< 32 bit unsigned integer type.
Int64 int64value; ///< 64 bit signed integer type.
UInt64 ulnt64value; ///< 64 bit unsigned integer type.
Float32 float32Value; ///< 32 bit single floating-point type.
Float64 float64value; ///< 64 bit double floating-point type.
Duration durationValue; ///< Duration in nanoseconds.
DateTime dateTimeValue; ///< Point in time in nanoseconds.
bi
}

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 17 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

1
2

2223 AnySimple

This type is a discriminated union with type and value.

namespace Smp
{
/// Variant of simple type values.
/// The AnySimple type is a Discriminated Union, with type and value.
struct AnySimple
{
SimpleTypeKind type; ///< Contained simple type
SimpleTypeValue value; ///< Union of values and references
bi

2224 AnySimpleArray

This type is an array of type AnySimple.

namespace Smp

{
/// Array of AnySimple values.

typedef AnySimple* AnySimpleArray;
}i

2.2.3 Universally Unique Identifiers

For a unique identification of types (and hence models), SMP2 uses Universally Unique Identifiers with the
format specified by the Open Group (http://www.opengroup.org).

namespace Smp

{
/// Universally Unique Identifier
/// @remarks The 8-4-4-4-12 format as specified by the Open Group is used.
struct Uuid

{

UInt32 Datal; ///< 8 hex nibbles
UIntl6 Data2; ///< 4 hex nibbles
UIntl6 Data3; ///< 4 hex nibbles
UInt8 Data4[8]; ///< 4+12 hex nibbles

In C++, constants of structure types can be defined, which allows pre-defining some identifiers used later.

2.2.4 Strings

The C++ language has limited support for strings. Many applications use null-terminated arrays of
characters to store string values, others use the string class from the Standard Template Library (STL). As
SMP2 uses only fixed strings, either as input parameters, or as constant return values of operations
(GetName () and GetDescription () methods of the IObject base interface), all strings of the PIM
are mapped to constant character pointers (const Char8+*) in this document.

namespace Smp

{
typedef const Char8* String8; /// String8 of 8 bit characters.

}

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 18 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

2.2.5 Collections

The C++ language itself does not provide a native mechanism for collections. Therefore, the Standard
Template Library (STL) is used for the representation of collections, namely the std: : vector template
class.

2.3 Interfaces

C++ does not have a specific language mechanism to define interfaces. Therefore, the following mapping
has been used:

e An Interface is mapped toa class.
e All methods within an interface are declared as public.
e All methods within an interface are declared as virtual.

e All methods within an interface are declared as abstract (“= 07).

2.4 Inheritance

As C++ does not have the concept of an interface, it cannot explicitly provide a mechanism for interface
inheritance. With the mapping of interfaces to classes with public, virtual, abstract methods, the standard
C++ inheritance mechanism (also used for implementation inheritance) is used. As C++ provides multiple
(implementation) inheritance, this can be used to represent multiple interface inheritance. In order to avoid
problems when inheriting the same interface twice (“diamond inheritance”), inheritance of interfaces is
always defined as public virtual.

2.5 Deployment

C++ is standardised on source code level, not on binary level. Therefore, the mechanisms introduced here
may not work between different compilers, i.e. when using different compilers for different components
involved in a simulation. The mapping defined in this document should allow a binary distribution of
models, i.e. distributing models with their header files only, but not including their implementation source
code. However, this must not be misunderstood as binary compatibility, which is not even guaranteed on
the same Operating System (OS).

The context in which components are deployed in greatly influences the requirement on object lifetime
management. For example, if components are packaged in different dynamic link libraries or shared
libraries, object construction and destruction need to follow stricter rules then if all components originate
from the same static library or executable. For example in Microsoft Windows, objects cannot be created in
one DLL and destroyed in another one. Furthermore, if components are to be deployed in a multi-process
or multi-machine scenario, method and property calls need to be marshalled in one way or another, which
requires the support of a middleware, like for example CORBA. Exception handling also works differently
in a distributed context compared to an in-process context.

The platform mapping introduced in this document does not yet cover deployment scenarios. Typically, a
model developer makes use of existing middleware (CORBA, COM, J2EE, .NET) when deploying models.
The scope of this mapping is important in order to be able to deploy successfully a C++ SMP2 system.
Currently, it is assumed that all components will be deployed in the same process. If a distributed scenario
is required, then it is the responsibility of the developers to handle the distribution aspects of the
deployment (e.g. component creation, marshalling, exception handling, etc.).

2.6 Performance and Tradeoffs

The platform mapping has to be designed to be applicable for real-time scenarios. In this sense, ease of use
and performance are often in conflict. For example, using a flexible invocation mechanism generally

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 19 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

requires string or character array manipulation, which can be slow compared to direct access. In the design
of this mapping to C++ we have taken care of separating the data flow used at runtime during the normal
execution of the system from the set-up and scripting capabilities provided.

Therefore, we assume that model to model communication will be performed through native interfaces (e.g.
the satellite talks to the environment through a dedicated IEnvironment interface that is bound at
initialisation using the linking information contained in the SMDL Assembly). Similarly, the scheduler
calls methods on the models through the Execute method of the dedicated TEntryPoint interface.

On the other hand, a flexible set-up mechanism, graphical user interfaces and scripting are made possible or
improved through the flexible publication and dynamic invocation mechanisms.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 20 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

This Page is Intentionally left Blank

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 21 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

3. COMPONENT MODEL

This section details the mapping of the platform independent Component Model to ANSI/ISO C++.

3.1 Exceptions

SMP2 defines some basic exceptions which are used in several interfaces, and which are therefore defined
outside of an individual interface. For each exception, see the detailed specification of the interfaces to find
out which methods actually may raise this exception.

The SMP2 Component Model has been specified using the CORBA Interface Definition Language. This
language does not support inheritance of exceptions. In C++, this is possible, and as it makes exception
handling much easier to do so, the C++ mapping maps SMP2 exceptions to exceptions which derive from a
common Smp: : Exception base class.

namespace Smp
{
/// Base class for all SMP exceptions.
class Exception : public std::exception, public virtual IObject
{
private:
/// Name of the exception that is returned by GetName.
String8 exceptionName;

protected:
/// Description of the problem encountered.
Char8* description;

/// Protected constructor available to derived classes only.
Exception(String8 _exceptionName) throw()
exceptionName (_exceptionName),
description (NULL)
{
}

/// Virtual destructor to release memory.
virtual ~Exception() throw()
{

delete description;

}

public:
/// Get name of exception class.
String8 GetName () const

{

return exceptionName;

}

/// Get description of exception.
String8 GetDescription() const
{
return description;
}
bi

This base exception provides an implementation of the IObject interface (see below), so that for each
SMP2 exception, at least the name and a description can be queried. Further, it only provides a protected
constructor with an exceptionName, so that it is guaranteed that all derived exceptions set the name that
is returned on GetName ().

The description text that is returned by GetDescription () is a protected field, and can hence be
modified in derived classes. All other exceptions provide a textual description of the problem encountered
using this field — but the source code that creates this description is omitted from this document for some of
the exceptions (only “...” is shown).

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 22 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

1
2

3.1.1 InvalidObjectName

namespace Smp

{

static const String8 InvalidObjectNameTemplate = "Invalid object name '%s'";

/// Invalid object name.

class InvalidObjectName : public Exception

{

public:
/// Invalid object name passed to SetName() .
String8 objectName;

InvalidObjectName (
String8 _objectName) throw()
Exception("InvalidObjectName"),
objectName (_objectName)
{
description = new Char8[strlen(InvalidObjectNameTemplate)
+ strlen(objectName)];

sprintf (description, InvalidObjectNameTemplate,
objectName) ;

This exception is raised when trying to set an object’s name to an invalid name.

3.1.2 DuplicateName

namespace Smp

{

static const String8 DuplicateNameTemplate =

1o

"Name '$s' is already used by another object";

/// Duplicate name.

class DuplicateName : public Exception

{

public:
/// Name that already exists in the collection.
String8 name;

DuplicateName (
String8 _name) throw()
Exception ("DuplicateName"),
name (_name)
{
description = new Char8[strlen(DuplicateNameTemplate)
+ strlen(name)];

sprintf (description, DuplicateNameTemplate,
name) ;

This exception is raised when trying to add an object to a collection of objects, which have to have unique
names, but another object with the same name does exist already in this collection. This would lead to
duplicate names.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page
Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

23 of 96
1
2

3.1.3 InvalidAnyType

namespace Smp

{
static const String8 InvalidAnyTypeTemplate =
"Invalid type found: Expected '%s', but found

v T

ss'";
/// Invalid type of AnySimple.
class InvalidAnyType : public Exception
{
public:
/// Type that is not valid.
Smp: :SimpleTypeKind invalidType;
/// Type that was expected.
Smp: :SimpleTypeKind expectedType;

InvalidAnyType (

Smp: :SimpleTypeKind _invalidType,

Smp: :SimpleTypeKind _expectedType) throw()
Exception("InvalidAnyType"),

invalidType (_invalidType),

expectedType (_expectedType)

description = new Char8[strlen(InvalidAnyTypeTemplate)
+ strlen(TypeName [expectedType])
+ strlen(TypeName[invalidTypel)1;

sprintf (description, InvalidAnyTypeTemplate,
TypeName [expectedTypel,
TypeName [invalidTypel) ;

This exception is raised when trying to use an AnySimple argument of wrong type.

3.1.4 InvalidObjectType

namespace Smp

{
static const String8 InvalidObjectTypeTemplate =
"Object '%$s' is not of valid type.";

/// Invalid type of an Object.
class InvalidObjectType : public std::exception
{
public:
/// Object that is not valid type.
Smp: :I0bject* invalidObject;

InvalidObjectType (
IObject* _invalidObject) throw()
Exception("InvalidObjectType"),
invalidObject (_invalidObject)
{
Smp::String8 objectName = "NULL";

if (invalidObject)
{
objectName = invalidObject->GetName () ;

}

description = new Char8[strlen(InvalidObjectTypeTemplate)
+ strlen(objectName)];

sprintf (description, InvalidObjectTypeTemplate,
objectName) ;

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 24 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

1
2

This exception is raised when passing an object of a wrong type to a method. This exception is based on
some additional semantics, e.g. a container that has been defined as a container of receivers implementing

an IReceiver interface.

3.2 Objects and Components
In SMP2, a simulation is composed out of components, where models, services, and the simulation

environment all implement a common base interface. Other elements in SMP are not components, but only
objects.

3.2.1 Obijects

Objects are the bases for components. They provide name and description.

3.21.1 I0bject

namespace Smp
{
/// Base interface for all objects.
class IObject
{
public:
/// Standard destructor.
virtual ~IObject() { }

/// Returns the name of the object ("property getter").
virtual String8 GetName () const = 0;

/// Returns the description of the object ("property getter").
virtual String8 GetDescription() const = 0;

This interface is the base interface for almost all other SMP2 interfaces. While most interfaces derive from
IComponent, which itself is derived from IObject, some objects (including IEntryPoint,
IEventSink, IEventSource, IContainer and IReference) are directly derived from
IObject.

3.2.2 Components
Many elements in SMP2 are components, which implement the IComponent interface.

The three most important component types are models, services, and the simulator. The first two of these
interfaces are introduced in this section, while the ISimulator interface is explained in section 3.6.

3.2.21 IComponent

namespace Smp

{

// Forward declaration because of circular references.
class IComposite;

/// Base interface for all components.
class IComponent : public virtual IObject

{

public:
/// Returns the parent component of the component ("property getter").
virtual IComposite* GetParent() const = 0;

}i

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 25 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

All SMP2 components implement this base interface.

3.22.2 ComponentCollection

namespace Smp
{
/// Collection of components.
typedef std::vector<IComponent*> ComponentCollection;

A component collection is an ordered collection of components, which allows iterating all members.
3.22.3 ModelStateKind

This is an enumeration of the available states of a model. Each model is always in one of these four model
states.

Before going into Initialising state, the simulator has to ensure that every model is in Connected
state.

namespace Smp
{
enum ModelStateKind
{
MSK_Created,
MSK_Publishing,
MSK_Configured,
MSK_Connected

3.2.2.4 InvalidModelState

This exception is thrown by any of the model state transition methods when it is called in an invalid state of
the model. The exception names both the invalid and the excepted state.

static const String8 InvalidModelStateTemplate =
"Invalid state: Expected '$%s', but is '&$s'";

/// Invalid model state.
/// This exception is raised by a model when one of the
/// state transition methods is called in an invalid state.
class InvalidModelState : public Smp::Exception
{
public:
/// Name of the state that is not valid.
Smp: :ModelStateKind invalidState;
/// Name of the state that was expected.
Smp: :ModelStateKind expectedState;

/// Constructor for new exception.
InvalidModelState (

Smp: :ModelStateKind _invalidState,

Smp: :ModelStateKind _expectedState) throw()
Smp: :Exception("InvalidModelState"),

invalidState(_invalidState),

expectedState (_expectedState)

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page
Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

26 of 96
1
2

3.2.2.5 IModel

namespace Smp

{
// Forward declarations because of circular references.
class IPublication;
class ISimulator;

/// Model base interface.
class IModel : public virtual IComponent
{
public:
/// Return model state.
virtual ModelStateKind GetState() const = 0;

/// Request for publication.
virtual void Publish (IPublication* receiver) throw (
Smp: :IModel::InvalidModelState) = 0;

/// Request for configuration.
virtual void Configure (Smp::Services::ILogger* logger) throw (
Smp:: IModel::InvalidModelState) = 0;

/// Connect model to simulator.
virtual void Connect (ISimulator* simulator) throw (
Smp:: IModel::InvalidModelState) = 0;

All SMP models implement this interface. As models interface to the simulation environment, they have a

dependency to it via the two interfaces TPublication and ISimulator.

3.2.2.6 ModelCollection

namespace Smp
{
/// Collection of models.
typedef std::vector<IModel*> ModelCollection;

A model collection is an ordered collection of models, which allows iterating all members.

3.2.2.7 IService

namespace Smp

{
/// Base interface for simulation services.
class IService : public virtual IComponent
{
bi

All SMP services implement this interface. It does not add any specific functionality.

3.2.2.8 ServiceCollection

namespace Smp
{
/// Collection of services.
typedef std::vector<IService*> ServiceCollection;

A service collection is an ordered collection of services, which allows iterating all members.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 27 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

3.3 Component Mechanisms
While the IComponent base interface provides mechanisms to get name, description, and parent, it does
not allow specifying further relations between components. The mechanisms supported by SMP2 are

aggregation, composition, inter-component events via event sources and event sinks, dynamic invocation
and persistence.

3.3.1 Aggregation

Via aggregation, a component can reference other components in the component hierarchy to use their
methods. As opposed to composition, an aggregated component is not owned, but only referenced.

3.3.1.1 IAggregate

namespace Smp
{
/// Aggregate component.
class IAggregate : public virtual IComponent
{
public:
/// Get all references.
virtual const ReferenceCollection* GetReferences() const = 0;

/// Get a reference by name.
virtual IReference* GetReference (String8 name) const = 0;

bi

A component with references to other components implements this interface. Referenced components are
held in named references.

3.3.1.2 IReference

namespace Smp
{
/// Reference to components.
class IReference : public virtual IObject
{
public:
/// Get all referenced components.
virtual const ComponentCollection* GetComponents() const = 0;

/// Get a referenced component by name.
virtual IComponent* GetComponent (String8 name) const = 0;

A reference allows querying for the referenced components.

3.3.1.3 ReferenceCollection

namespace Smp
{
/// Collection of references.
typedef std::vector<IReference*> ReferenceCollection;

A reference collection is an ordered collection of references, which allows iterating all members.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 28 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

3.3.2 Composition

Via composition, a component can contain other components in the component hierarchy. As opposed to
aggregation, a component is owned, and its life-time coincides with its parent component. Composition is
the counter-part to the GetParent () method of the IComponent interface and allows traversing the
tree of components in any direction.

3.3.2.1 IComposite

namespace Smp
{
/// Composite component.
class IComposite : public virtual IComponent
{
public:
/// Get all containers.
virtual const ContainerCollection* GetContainers() const = 0;

/// Get a container by name.
virtual IContainer* GetContainer (String8 name) const = 0;
bi

A component with children implements this interface. Child components are held in named containers.

3.3.2.2 IContainer

namespace Smp
{
/// Container of components.
class IContainer : public virtual IObject
{
public:
/// Get all contained components.
virtual const ComponentCollection* GetComponents() const = 0;

/// Get a contained component by name.
virtual IComponent* GetComponent (String8 name) const = 0;

}i

A container allows querying for its children.

3.3.2.3 ContainerCollection

namespace Smp

{
/// Collection of containers.
typedef std::vector<IContainer*> ContainerCollection;

A container collection is an ordered collection of containers, which allows iterating all members.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 29 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

3.3.3 Events

Events are used in event-based programming. Event based programming works via event sources and event
sinks that can be registered to and unregistered from event sources. When an event source emits an event, it
notifies all subscribed event sinks.

3.3.3.1 IEventSink

namespace Smp
{
/// Event sink that can be subscribed to event source (IEventSource).
class IEventSink : public virtual IObject
{
public:
/// Event notification.
virtual void Notify(IObject* sender, AnySimple arg) = 0;
bi

Provide notification method (event handler) that can be called by event publishers when an event is
emitted.

3.3.3.2 EventSinkCollection

namespace Smp
{
/// Collection of event sinks.
typedef std::vector<IEventSink*> EventSinkCollection;

An event sink collection is an ordered collection of event sinks, which allows iterating all members.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 30 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

3.3.3.3 IEventSource

namespace Smp

{

class IEventSource : public virtual IObject
{
public:
/// Event sink is already subscribed.
class AlreadySubscribed : public Exception
{
public:
/// Event source the event sink is subscribed to.
const IEventSource* eventSource;
/// Event sink that is already subscribed.

const IEventSink* eventSink;
AlreadySubscribed(

const IEventSource* _eventSource,

const IEventSink* _eventSink) throw()

Smp: :Exception("AlreadySubscribed"),
eventSource (_eventSource),
eventSink (_eventSink) { ... }

bi

/// Event sink is not subscribed.
class NotSubscribed : public Exception

{
public:

const IEventSource* eventSource;
/// Event sink that is not subscribed.
const IEventSink* eventSink;

NotSubscribed (
const IEventSource* _eventSource,
const IEventSink* _eventSink) throw()

Smp: :Exception ("NotSubscribed"),
eventSource (_eventSource),
eventSink (_eventSink) { ... }

bi

/// Event sink is not compatible with event source.
class InvalidEventSink : public Exception
{
public:
/// Event source the event sink is subscribed to.
const IEventSource* eventSource;
/// Event sink that is not of valid type.

const IEventSink* eventSink;
InvalidEventSink (

const IEventSource* _eventSource,

const IEventSink* _eventSink) throw()

Smp: :Exception("InvalidEventSink"),
eventSource (_eventSource),
eventSink (_eventSink) { ... }

bi

/// Event subscription.

virtual void Subscribe (IEventSink* eventSink) throw (
Smp: : IEventSource: :AlreadySubscribed,
Smp: :IEventSource: :InvalidEventSink) = 0;

/// Event unsubscription.
virtual void Unsubscribe (IEventSink* eventSink) throw
Smp: : IEventSource: :NotSubscribed) = 0;

/// Event source that event sinks (IEventSink) can subscribe to.

/// Event source the event sink is not subscribed to.

(

Allow event consumers to subscribe or unsubscribe to/from an event.

File: SMP 2.0 Cpp Mapping - 1.2.doc

© EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 31 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

1
2

3.3.34 EventSourceCollection

namespace Smp
{
/// Collection of event sources.
typedef std::vector<IEventSource*> EventSourceCollection;

An event source collection is an ordered collection of event sources, which allows iterating all members.

3.3.4 Dynamic Invocation

Dynamic invocation is a mechanism that makes the operations of a component available via a standardised
interface (as opposed to a custom interface of the component which is not known at compile time of the
simulation environment). In order to allow calling a named method with any number of parameters, a
request object has to be created which contains all information needed for the method invocation. This
request object is as well used to transfer back a return value of the operation.

The dynamic invocation concept presented here standardises the request objects (IRequest interface). In
addition, two methods are provided as part of IDynamicInvocation to create and delete request
objects. However, it is not mandatory to use these methods, as request objects can well be created and
deleted using another implementation. A reason for doing this could be to minimise the number of round-
trips between a client (that calls a method) and a component that implements IDynamicInvocation.

When a model publishes information about its available operations to the TPublication interface, this
information can be used to create corresponding request objects. Therefore, the C++ Mapping of the
IPublication interface contains two methods CreateRequest () and DeleteRequest () that a
model can use to delegate the implementation of these two methods.

Like all features in this section, dynamic invocation is an optional feature.

3.3.4.1 IDynamiclnvocation

A component may implement this interface in order to allow dynamic invocation of its operations.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 32 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

namespace Smp
{
/// Dynamic invocation.
class IDynamicInvocation : public virtual IComponent
{
public:
/// Invalid operation name.
class InvalidOperationName : public Exception
{
public:
/// Operation name of request passed to the Invoke() method.
String8 operationName;

InvalidOperationName (
String8 _operationName) throw()

Smp: :Exception("InvalidOperationName"),
operationName (_operationName) { ... }

}i

/// Invalid parameter count.
class InvalidParameterCount : public Exception
{
public:
/// Operation name of request passed to the Invoke() method.
String8 operationName;
/// Correct number of parameters of operation.
const Int32 operationParameters;
/// Wrong number of parameters of operation.
const Int32 requestParameters;

InvalidParameterCount (

String8 _operationName,

const Int32 _operationParameters,

const Int32 _requestParameters) throw()
Smp: :Exception("InvalidParameterCount"),

operationName (_operationName),
operationParameters (_operationParameters),
requestParameters (_requestParameters) { ... }

bi

/// Invalid parameter type.
class InvalidParameterType : public Exception
{
public:
/// Operation name of request passed to the Invoke() method.
String8 operationName;
/// Name of parameter of wrong type.
String8 parameterName;

InvalidParameterType (
String8 _operationName,
String8 _parameterName) throw()

Smp: :Exception("InvalidParameterType"),
operationName (_operationName),
parameterName (_parameterName) { ... }

}i

/// Create request.
virtual IRequest *CreateRequest (String8 operationName) = 0;

/// Dynamic invocation of operation.

virtual void Invoke (IRequest *request) throw (
Smp: :IDynamicInvocation: :InvalidOperationName,
Smp: :IDynamicInvocation: :InvalidParameterCount,
Smp: :IDynamicInvocation::InvalidParameterType) = 0;

/// Delete request.
virtual void DeleteRequest (IRequest *request) = 0;

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 33 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

3.3.4.2 IRequest

namespace Smp

{

/// Request for dynamic invocation.
class IRequest

{

public:

/// Invalid parameter index.
class InvalidParameterIndex : public Exception
{
public:
/// Name of operation.
String8 operationName;
/// Invalid parameter index used.
const Int32 parameterIndex;

InvalidParameterIndex (
String8 _operationName,
const Int32 _parameterIndex) throw()
Smp: :Exception("InvalidParameterIndex"),
operationName (_operationName),
parameterIndex (_parameterIndex) {}

bi

/// Invalid value for parameter.

class InvalidParameterValue : public Exception

{

public:
/// Name of parameter value was assigned to.
String8 parameterName;
/// Value that was passed as parameter.
const AnySimple value;

InvalidParameterValue (
String8 _parameterName,
const AnySimple _value) throw()

Smp: :Exception("InvalidParametervalue"),
parameterName (_parameterName),
value (_value) {}

}i

/// Invalid value for return value.
class InvalidReturnValue : public Exception
{
public:
/// Name of operation the return value was assigned to.
String8 operationName;
/// Value that was passed as return value.
const AnySimple value;

InvalidReturnValue (
String8 _operationName,
const AnySimple _value) throw()
Smp: :Exception("InvalidReturnvalue"),
operationName (_operationName),
value (_value) {}
}i

/// Operation is a void operation.
class VoidOperation : public Exception
{
public:

/// Name of operation.

String8 operationName;

VoidOperation (
String8 _operationName) throw()
Smp: :Exception ("VoidOperation"),
operationName (_operationName) {}
}i

© EUROPEAN SPACE AGENCY, 2005

File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping
Doc Ref EGOS-SIM-GEN-TN-0102
Date 28 October 2005

Page 34 of 96
Issue 1
Rev 2

/// Virtual Destructor.
virtual ~IRequest() { }

/// Get operation name.
virtual String8 GetOperationName () const = 0;

/// Get parameter count.
virtual Int32 GetParameterCount () const = 0;

/// Get index of a parameter.
virtual Int32 GetParameterIndex(String8 parameterName)

/// Set a parameter value.

virtual void SetParameterValue (
const Int32 index,
const AnySimple value) throw (
Smp: :IRequest::InvalidParameterIndex,
Smp: :IRequest::InvalidParametervValue,
Smp::InvalidAnyType) = O;

/// Get a parameter value.
virtual AnySimple GetParameterValue (const Int32 index)
Smp: :IRequest::InvalidParameterIndex) = 0;

/// Set the return value.

Smp: :IRequest::InvalidReturnvalue,
Smp: :IRequest::VoidOperation,
Smp::InvalidAnyType) = 0;

/// Get the return value.
virtual AnySimple GetReturnValue () const throw (
Smp: :IRequest::VoidOperation) = 0;

virtual void SetReturnValue(const AnySimple value) throw (

const = 0;

const throw (

The request holds information that is passed between a client invoking an operation via the

IDynamicInvocation interface and a component being invoked.

3.3.5 Persistence
Persistence of SMP2 components can be handled in one of two ways:

1. External Persistence: The simulation environment stores and

restores the model’s state by

directly accessing the fields that are published to the simulation environment, i.e. via the
IPublication interface. This should be the preferred mechanism for the majority of models.

2. Self-Persistence: The component may implement the ITPersist interface, which allows it to
store and restore (part of) its state into or from storage that is provided by the simulation
environment. This mechanism is usually only needed by specialised models, for example
embedded models that need to load on-board software from a specific file. Further, this
mechanism can be used by simulation services if desired. For example, the Scheduler service may

use it to store and restore its current state.

Like all features in this section, self-persistence of models and components is an optional feature, while
external persistence (via the Store and Restore methods of the ISimulator interface) is a mandatory

feature of every SMP2 simulation environment.

File: SMP 2.0 Cpp Mapping - 1.2.doc

© EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 35 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2
3.3.5.1 IPersist

namespace Smp
{
/// Self persistence for components.
class IPersist : public virtual IComponent
{
public:
/// Cannot restore from storage reader (IStorageReader).
class CannotRestore : public std::exception
{
public:
/// Error message indicating details of the problem.
String8 message;

CannotRestore (String8 _message) throw()
Smp: :Exception("CannotRestore"),
message (_message) { ... }

}i

/// Cannot store to storage writer (IStorageWriter).
class CannotStore : public std::exception
{
public:
/// Error message indicating details of the problem.
String8 message;

CannotStore (String8 _message) throw()
Smp: :Exception ("CannotStore"),
message (_message) { ... }

}i

/// Restore component state from storage.

/// @param reader Interface that allows reading from storage.
virtual void Restore(IStorageReader* reader) throw (
Smp: :IPersist::CannotRestore) = 0;

/// Store component state to storage.

/// Qparam writer Interface that allows writing to storage.
virtual void Store(IStorageWriter* writer) throw (
Smp::IPersist::CannotStore) = 0;

A component may implement this interface if it wants to have control over loading and saving of its state.

3.3.5.2 IStorageReader

namespace Smp

{
/// Storage reader.

class IStorageReader

{

public:
/// Virtual destructor.
virtual ~IStorageReader () { }

/// Read data from storage.
virtual void Restore(void* address, Int32 size) = 0;
}i

Provide functionality to restore data from storage. A client (typically the simulation environment) provides
this interface to allow components implementing the TPersist interface to restore their state. It is passed

to the Restore () method of every component implementing IPersist.

© EUROPEAN SPACE AGENCY, 2005

File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page
Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

36 of 96
1
2

3.3.5.2.1 Restore

void Restore(void *address, Int32 size);

Restore a memory block from storage.

Parameters:
address Memory address of memory block.
size Number of bytes to read from storage.

Returns:
Void.

Exceptions:
None.

Remarks:
The memory block is not interpreted, but read from storage in binary format.

3.3.5.3 IStorageWriter

namespace Smp

{
/// Storage writer.
class IStorageWriter

{

public:
/// Virtual destructor.
virtual ~IStorageWriter () { }

/// Write data to storage.
virtual void Store(void* address, Int32 size) = 0;

Provide functionality to store data to storage. A client (typically the simulation environment) provides this
interface to allow components implementing the IPersist interface to store their state. It is passed to the

Store () method of every model implementing IPersist.

3.3.5.3.1 Store

void Store(void *address, Int32 size);

Store a memory block to storage.

Parameters:
address Memory address of memory block.
size Number of bytes to write to storage.

Returns:
Void.

Exceptions:
None.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 37 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2
Remarks:

The memory block is not interpreted, but written to storage in binary format.

3.4 Model Mechanisms
While the IModel interface defines the mandatory functionality every SMP2 model has to provide, this

section introduces additional mechanisms available for more advanced use. Entry points allow models
exposing void functions to the scheduler or event manager services.

3.4.1 Entry Points

An entry point is a void function with no return value that can be exposed e.g. to the scheduler service.

3.4.11 IEntryPoint

namespace Smp
{
/// Entry point for IScheduler or IEventManager.
class IEntryPoint : public virtual IObject
{
public:
/// Entry point owner.
virtual IComponent* GetOwner (void) const = 0;

/// Entry point execution.
virtual void Execute(void) const = 0;

}i

This interface provides a notification method (event handler) that can be called by the Scheduler or Event
Manager when an event is emitted.

3.4.1.2 EntryPointCollection

namespace Smp
{
/// Collection of entry points.
typedef std::vector<const IEntryPoint *> EntryPointCollection;

An entry point collection is an ordered collection of entry points, which allows iterating all members.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 38 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

3.5 Management Interfaces

Managed interfaces allow external components to access all mechanisms by name. This includes the basic
component features, optional component mechanisms and optional model mechanisms.

Managed interfaces allow full access to all functionality of components. For composition and aggregation,
they extend the existing interfaces by methods to add new components or references, respectively. For
entry points, event sources and event sinks, the managed interfaces provide access to the elements by name.
For fields, access by name is provided by an extended interface allowing reading and writing field values.

All management interfaces are optional, and only need to be provided for models used in a managed

environment. Typically, in a managed environment a model configuration is build from an XML document
(namely an SMDL Assembly) during the Creat ing phase.

3.5.1 Managed Components

Managed components provide write access to their properties, i.e. they provide corresponding “setter”
methods for the Name, Description, and Parent properties. This allows putting them into a hierarchy
with a given name and description.

3.5.1.1 IManagedObject

namespace Smp
{
namespace Management
{
/// Managed object.
class IManagedObject : public virtual IObject
{
public:
/// Defines the name of the managed object ("property setter").
virtual void SetName (String8 name) throw (
Smp::InvalidObjectName) = 0;

/// Defines the description of the managed object ("property setter").
virtual void SetDescription(String8 description) = 0;

}i

A managed object additionally allows assigning name and description.

3.5.1.2 IManagedComponent

namespace Smp
{
namespace Management
{
/// Managed component.
class IManagedComponent
public virtual IManagedObject,
public virtual IComponent

{

public:
/// Defines the parent component ("property setter").
virtual void SetParent (IComposite* parent) = 0;

bi

A managed component additionally allows assigning the parent.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping
Doc Ref EGOS-SIM-GEN-TN-0102
Date 28 October 2005

Page 39 of 96
Issue 1
Rev 2

3.5.2 Managed Component Mechanisms

The component mechanisms introduced in 3.3 (Component Mechanisms) do not provide full access for
external components. To overcome these limitations, managed interfaces are provided with full access to
all functionality. For composition and aggregation, these extend the existing interfaces by methods to add
new components respective references. For event sources and event sinks, the managed interfaces provide

access to the elements by name.

3.5.2.1 IManagedReference

namespace Smp

{

namespace Management

{

/// Managed reference.

{
public:
/// Reference is full.

{

public:
/// Name of full reference.
String8 referenceName;

const Int64 referenceSize;

ReferenceFull (
String8 _referenceName,
const Int64 _referenceSize)

Smp: :Exception ("ReferenceFull"),

}i

{

public:
/// Name of reference.
String8 referenceName;

const IComponent* component;

NotReferenced (
String8 _referenceName,

Smp: :Exception ("NotReferenced"),

component (_component) {
}i

/// Add component.

class IManagedReference : public virtual IReference

class ReferenceFull : public Exception

/// Number of components in the reference.

referenceName (_referenceName) ,
referenceSize (_referenceSize)

class NotReferenced : public Exception

/// Component that is not referenced.

const IComponent* _component)

referenceName (_referenceName),

virtual void AddComponent (IComponent* component) throw (
Smp: :Management : : IManagedReference: :ReferenceFull,

Smp::InvalidObjectType) = 0;

/// Get the number of referenced components.

virtual Int64 Count () const = 0;
/// Get lower bound of multiplicity.
virtual Int64 Lower () const = 0;

/// Get upper bound for number of components.

virtual Int64 Upper () const = 0;

/// Remove component.

virtual void RemoveComponent (IComponent* component) throw (
Smp: :Management: : IManagedReference: :NotReferenced) = 0;

© EUROPEAN SPACE AGENCY, 2005

File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 40 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

1
2

A managed reference additionally allows querying the size limits and adding referenced components.

3.5.2.2 IManagedContainer

namespace Smp
{
namespace Management
{
/// Managed container.
class IManagedContainer : public virtual IContainer
{
public:
/// Container is full.
class ContainerFull : public Exception
{
public:
/// Name of full container.
String8 containerName;
/// Number of components in the container, which is its Upper ()
/// limit when the container is full.
const Int64 containerSize;

ContainerFull (
String8 _containerName,
const Int64 _containerSize) throw()
Smp: :Exception("ContainerFull"),
containerName (_containerName),
containerSize(_containerSize) { ... }
}i

/// Add component.

virtual void AddComponent (IComponent* component) throw (
Smp: :Management: : IManagedContainer::ContainerFull,
Smp: :DuplicateName,
Smp: :InvalidObjectType) = 0;

/// Get the number of contained components.
virtual Int64 Count () const = 0;
/// Get lower bound of multiplicity.
virtual Int64 Lower () const = 0;
/// Get upper bound for number of components.
virtual Int64 Upper () const = 0;

bi

A managed container additionally allows querying the size limits and adding contained components.

3.5.2.3 IEventConsumer

namespace Smp
{
namespace Management
{
/// Event consumer.
class IEventConsumer : public virtual IComponent
{
public:
/// Get all event sinks.
virtual const EventSinkCollection* GetEventSinks() const = 0;

/// Get an event sink by name.
virtual IEventSink* GetEventSink (String8 name) const = 0;

bi

Component that holds event sinks, which may be subscribed to other component's event sources.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page
Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

41 of 96
1
2

3.5.2.4 IEventProvider

namespace Smp
{
namespace Management
{
/// Event publisher.
class IEventProvider : public virtual IComponent
{
public:
/// Get all event sources.
virtual const EventSourceCollection *GetEventSources() const =

/// Get an event source by name.
virtual IEventSource *GetEventSource(String8 name) const = 0;
}i

0;

Component that holds event sources, which allow other components to subscribe their event sinks.

3.5.3 Managed Model Mechanisms

The model mechanisms introduced in 3.3.4 (Dynamic Invocation) do not provide full access for external
components. To overcome these limitations, managed interfaces are provided with full access to all
functionality. For entry points, the managed interface provides access to the entry points by name. For

fields, access by name is provided by an extended interface allowing reading and writing field values.

3.5.3.1 IManagedModel

namespace Smp
{
namespace Management
{
/// Managed model.
class IManagedModel : public virtual IManagedComponent,
public virtual IModel
{
public:
/// Invalid field name.
class InvalidFieldName : public Exception
{
public:
/// Fully qualified field name that is invalid.
String8 fieldName;

InvalidFieldName (
String8 _fieldName) throw()
Smp: :Exception("InvalidFieldName"),
fieldName (_fieldName) { ... }
bi

/// Invalid value for field.
class InvalidFieldValue : public Exception
{
public:
/// Fully qualified field name the value was assigned to.
String8 fieldName;
/// Value that was passed as new field value.
const AnySimple invalidvalue;

InvalidFieldValue (
String8 _fieldName,
const AnySimple _invalidvValue) throw()
Smp: :Exception("InvalidFieldvalue"),
fieldName (_fieldName),
invalidvValue (_invalidvalue) { ... }

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc
Doc Ref
Date

SMP 2.0 C++ Mapping Page
EGOS-SIM-GEN-TN-0102 Issue
28 October 2005 Rev

42 of 96
1
2

bi

/// Invalid array size.
class InvalidArraySize : public Exception

{

public:

}i

/// Name of field that has been accessed.
String8 fieldName;

/// Invalid array size.

const Int64 givenSize;

/// Real array size.

const Int64 arraySize;

InvalidArraySize (
String8 _fieldName,
const Int64 _givenSize,
const Int64 _arraySize) throw()
Smp: :Exception("InvalidArraySize"),
fieldName (_fieldName),
givenSize (_givenSize),
arraySize(_arraySize) { ... }

/// Invalid value for field.
class InvalidArrayValue : public Exception

{

public:

}i

/// Fully qualified field name the value was assigned to.
String8 fieldName;

/// Value that was passed as new field value.

const AnySimpleArray invalidvValue;

InvalidArrayValue (
String8 _fieldName,
const AnySimpleArray _invalidValue) throw()
Smp: :Exception("InvalidArrayvValue"),
fieldName (_fieldName),
invalidvalue(_invalidvalue) { ... }

/// Get the value of a field which is typed by a system type.
virtual AnySimple GetFieldValue (String8 fullName) throw (

Smp: :Management: : IManagedModel: :InvalidFieldName) = 0;

/// Set the value of a field which is typed by a system type.

virtual void SetFieldValue (String8 fullName, const AnySimple value) throw(

Smp: :Management : : IManagedModel: : InvalidFieldName,
Smp: :Management : : IManagedModel: : InvalidFieldvalue) = 0;

/// Get the value of an array field which is typed by a system type.
virtual void GetArrayValue (

String8 fullName,

const AnySimpleArray values,

const Int32 length) throw (

Smp: :Management: : IManagedModel: :InvalidFieldName,

Smp: :Management: : IManagedModel: : InvalidArraySize) = 0;

/// Set the value of an array field which is typed by a system type.
virtual void SetArrayValue (

String8 fullName,

const AnySimpleArray values,

const Int32 length) throw (

Smp: :Management: : IManagedModel: :InvalidFieldName,

Smp: :Management : : IManagedModel: : InvalidArraySize,

Smp: :Management : : IManagedModel: : InvalidArrayValue) = 0;

A managed model is a managed component that additionally allows querying or modifying field values.

File: SMP 2.0 Cpp Mapping - 1.2.doc

© EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 43 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

1
2

3.5.3.2 IEntryPointPublisher

namespace Smp
{
namespace Management
{
/// Entry point publisher.
class IEntryPointPublisher : public virtual IModel
{
public:
/// Get all entry points.
virtual const EntryPointCollection* GetEntryPoints() const = 0;

/// Get an entry point by name.
virtual const IEntryPoint* GetEntryPoint (String8 name) const = 0;
bi

An entry point publisher is a model that publishes entry points, which may be registered, for example, with
the Scheduler or the Event Manager services.

3.6 Simulation Environments

A Simulation Environment has to implement the ISimulator interface to give access to the models and
services. This interface is derived from IComposite to give access to at least two managed containers,
namely the ‘“Models” and “Services” containers. Finally, a simulation environment has to pass a
publication server to all models in the Publishing state.

namespace Smp

{
const String8 SMP_SimulatorModels = "Models";
const String8 SMP_SimulatorServices = "Services";

3.6.1 Simulators

The Simulation Environment is always in one of the defined simulator states, with well-defined state
transition methods between these states.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 44 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

Settp ﬁ Configureg | Building =] p hish)

Connect()

(automatic)
Initialising

Initialise() (automatic)

(automatic) (automatic)

Store()

Execution Abort() can be

called from any
state.

s |

Figure 3-1: Simulation Environment State Diagram with State Transition Methods

Exit()

The available simulator states are enumerated by the SimulatorStateKind enumeration, while the
ISimulator interface provides the corresponding state transition methods. Except for the Abort ()
state transition, which can be called from any other state, all other state transitions should be called only
from the appropriate states, as shown in the Simulation Environment State Diagram in Figure 3-1.
However, when calling a state transition from another state, the simulation environment shall not raise an
exception, but ignore the state transition. It may use the Logger service to log a warning message.

3.6.1.1 SimulatorStateKind

namespace Smp
{
/// Available simulator states.
enum SimulatorStateKind
{
SSK_Building,
SSK_Connecting,
SSK_Initialising,
SSK_Standby,
SSK_Executing,
SSK_Storing,
SSK_Restoring,
SSK_Exiting,
SSK_Aborting

Enumeration of the available states of the simulator.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page
Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

45 of 96
1
2

3.6.1.2 ISimulator

namespace Smp
{
/// Interface to the Simulator.
class ISimulator : public virtual IComposite

{

public:
/// Get all models.
virtual const ModelCollection* GetModels() = 0;
/// Get a root model by name.
virtual IModel* GetModel (String8 name) = 0;
/// Add a root model.
virtual void AddModel (IModel* model) throw (Smp::DuplicateName) = 0;

/// Get all services.

virtual const ServiceCollection* GetServices() = 0;

/// Get a service by name.

virtual IService* GetService(String8 name) = 0;

/// Add a user-defined service.

virtual void AddService (IService* service) throw (Smp::DuplicateName)

/// Query for mandatory logger service.

virtual Services::ILogger* GetLogger () const = 0;

/// Query for mandatory scheduler service.

virtual Services::IScheduler* GetScheduler () const = 0;

/// Query for mandatory time keeper service.

virtual Services::ITimeKeeper* GetTimeKeeper () const = 0;

/// Query for mandatory event manager service.

virtual Services::IEventManager* GetEventManager () const = 0;

/// Simulator state.
virtual SimulatorStateKind GetState() const = 0;

/// Call Publish() method of models.
virtual void Publish() = 0;

/// Call Configure() method of models.
virtual void Configure() = 0;

/// Enter connecting state.
virtual void Connect() = 0;

/// Enter initialising state.
virtual void Initialise() = O;

/// Enter standby state.
virtual void Hold() = 0;

/// Enter executing state.
virtual void Run() = 0;

/// Enter storing state.
virtual void Store(String8 filename) = 0;

/// Enter restoring state.
virtual void Restore(String8 filename) = 0;

/// Enter exiting state.
virtual void Exit () = 0;

/// Enter aborting state.
virtual void Abort() = 0;

/// Add initialisation entry point.
virtual void AddInitEntryPoint (IEntryPoint* entryPoint) = 0;

0;

This interface gives access to the simulation environment state and services.

© EUROPEAN SPACE AGENCY, 2005

File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 46 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

3.6.1.3 IDynamicSimulator

namespace Smp

{

/// This interface gives access to a dynamic simulator.
class IDynamicSimulator : public virtual ISimulator
{
public:
/// Duplicate Uuid.
class DuplicateUuid : public Exception
{
public:
/// Name of factory that tried to register under this Uuid.
String8 newName;
/// Name of factory already registered under this Uuid.
String8 oldName;

DuplicateUuid(
String8 _newName,
String8 _oldName) throw()
Smp: :Exception ("DuplicateUuid"),
newName (_newName) ,
oldName (_oldName) { ... }
}i

/// Register a global component factory with the simulator.
virtual void RegisterFactory (IFactory *componentFactory) throw (
Smp: :IDynamicSimulator: :DuplicateUuid) = 0;

/// Create an instance of the given component implementation.
virtual IComponent* CreatelInstance(const Uuid implUuid) = 0;

/// Get the factory of the given component implementation.
virtual const IFactory* GetFactory(const Uuid implUuid) = 0;

/// Get all factories of the given component specification.
virtual FactoryCollection* GetFactories (const Uuid specUuid) = 0;

This interface extends the ISimulator interface and adds methods to dynamically create components

(typically models) from component factories. It makes use of the IFactory interface for factories.

3.6.1.4 IFactory

namespace Smp

{

/// This interface is implemented by all component factories.
class IFactory : public virtual IObject
{

public:
/// Get specification identifier of factory.
virtual Uuid GetSpecification() const = 0;

/// Get implementation identifier of factory.
virtual Uuid GetImplementation() const = 0;

/// Create a new instance.
virtual IComponent* CreatelInstance() = 0;

/// Delete an existing instance.
virtual void DeleteInstance (IComponent* instance) = 0;

This interface is implemented by all component factories.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 47 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

3.6.15 FactoryCollection

namespace Smp
{
/// Collection of factories.
typedef std::vector<IFactory*> FactoryCollection;

A factory collection is an ordered collection of factories, which allows iterating all members.

3.6.2 Publication
As part of the initialisation, every model needs to be given access to a publication receiver to publish its
fields and operations. While the simulation environment does not have to implement the TPublication

interface itself, it has to provide a publication receiver to each model during the Publishing state.

As the publication mechanism for C++ is complex, it has been moved to section 6 (Publication).

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 48 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

This Page is Intentionally left Blank

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 49 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

4. SIMULATION SERVICES

In order to facilitate the inter-operability between SMP2 compliant simulation environments (i.e. run-time
simulation kernels), several Simulation Services are defined in the SMP2 specification. Some services are
mandatory, where others are optional. A standardised mechanism of how models can acquire services is
part of the standard.

4.1 Mandatory Services
Any SMP2 compliant simulation environment shall support the following standard services.

4.1.1 Logger

The logger service provides a method to send a log message to the simulation log file.

41.11 ILogger

namespace Smp
{
namespace Services
{
/// Name of Logger service.
const String8 SMP_Logger = "Smp_Logger";

/// Identifier of log message kind.
typedef Int32 LogMessageKind;

/// This interface gives access to the Logger.
class ILogger : public virtual IService
{
public:
/// Return identifier of log message kind by name.
virtual LogMessageKind GetLogMessageKind (
String8 messageKindName) = 0;

/// Mechanism to log a messages.
virtual void Log(
const IObject *sender,
String8 message,
const LogMessageKind kind = LMK_Information) = 0;
}i

All objects in a simulation can log messages using this service.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 50 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

1
2

41.1.2 Predefined Log Message Kinds

namespace Smp
{
namespace Services
{
// Predefined Log Message Kinds
const LogMessageKind LMK_Information
const LogMessageKind LMK_Event =
const LogMessageKind LMK _Warning
const LogMessageKind LMK_Error
const LogMessageKind LMK_Debug =

///< Information message.
///< Event message.

///< Warning message.
///< Error message.

///< Debug message.

I I
CoNe N

Il
B W N o

~

~

// Names of predefined Log Message Kinds
const String8 LMK_InformationName = "Information";

const String8 LMK_EventName = "Event";
const String8 LMK_WarningName = "Warning";
const String8 LMK_ErrorName = "Error";
const String8 LMK_DebugName = "Debug";

When logging a message with the logger service, an additional kind parameter is passed to the Log ()
method to identify the kind of message. The application can use any valid number, e.g. to allow filtering
messages by message kind. However, the standard pre-defines a few message kinds that are assumed to be
used in most simulations.

4.1.2 Time Keeper
SMP2 supports four different kinds of time. The time managed by the Time Keeper simulation service is
called Simulation Time. The service keeps track of simulation time and puts it into relation with epoch and

mission time. Further, the service provides Zulu time based on the clock of the computer.

41.21 ITimeKeeper

namespace Smp
{
namespace Services
{
/// Name of Time Keeper service.
const String8 SMP_TimeKeeper = "Smp_TimeKeeper";

/// This interface gives access to the Time Keeper.
class ITimeKeeper : public virtual IService
{
public:
/// Return simulation time.
virtual Duration GetSimulationTime() = 0;
/// Return Epoch time.
virtual DateTime GetEpochTime() = 0;
/// Return Mission time.
virtual Duration GetMissionTime() = 0;
/// Return Zulu time.
virtual DateTime GetZuluTime() = 0;

/// Set Epoch time.

virtual void SetEpochTime (const DateTime epochTime) = 0;

/// Set Mission start.

virtual void SetMissionStart (const DateTime missionStart) = 0;
/// Set Mission time.

virtual void SetMissionTime (const Duration missionTime) = O;

bi

Components can query for the time, and set the epoch or mission time.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 51 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2
4.1.2.2 TimeKind

namespace Smp
{
namespace Services
{
/// Enumeration of supported
enum TimeKind
{
TK_SimulationTime, ///<
TK_EpochTime, ///<
TK_MissionTime, ///<
TK_ZuluTime VAAS

time types.

Simulation time.
Epoch time.
Mission time.
Zulu time.

SMP2 supports four different kinds of time.

© EUROPEAN SPACE AGENCY, 2005

File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 52 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

4.1.3 Scheduler

The scheduler service calls entry points of models based on events triggered by one of the four time kinds.
In addition, tasks can be created, which can contain an ordered collection of entry points. This allows
scheduling several entry points in one call to the scheduler.

4.1.3.1 IScheduler

namespace Smp
{
namespace Services
{
/// Name of Scheduler service.
const String8 SMP_Scheduler = "Smp_Scheduler";

/// This interface gives access to the Scheduler.
class IScheduler : public virtual IService
{
public:
virtual void AddImmediateEvent (
const IEntryPoint *entryPoint) = 0;
virtual EventId AddSimulationTimeEvent (
const IEntryPoint *entryPoint,
const Duration simulationTime,
const Duration cycleTime = O,
const Int64 count = 0) = 0;
virtual EventId AddMissionTimeEvent (
const IEntryPoint* entryPoint,
const Duration missionTime,
const Duration cycleTime = O,
const Int64 count = 0) = 0;
virtual EventId AddEpochTimeEvent (
const IEntryPoint* entryPoint,
const DateTime epochTime,
const Duration cycleTime = O,
const Int64 count = 0) = 0;
virtual EventId AddZuluTimeEvent (
const IEntryPoint* entryPoint,
const DateTime zuluTime,
const Duration cycleTime = O,
const Int64 count = 0) = 0;
virtual void SetEventSimulationTime (
const EventId event,
const Duration simulationTime) throw (InvalidEventId) = 0;
virtual void SetEventMissionTime (
const EventId event,
const Duration missionTime) throw (InvalidEventId) = 0;
virtual void SetEventEpochTime (
const EventId event,
const DateTime epochTime) throw (InvalidEventId) = 0;
virtual void SetEventZuluTime (
const EventId event,
const DateTime zuluTime) throw (InvalidEventId) = 0;
/// Set event cycle time.
virtual void SetEventCycleTime (
const EventId event,
const Duration cycleTime) throw (InvalidEventId) = 0;
/// Set event count.
virtual void SetEventCount (
const EventId event,
const Int64 count) throw (InvalidEventId) = 0;

virtual void RemoveEvent (const Int32 event) = 0;
}i

Components can register (Add) and unregister (Remove) entry points for scheduling. Further, they can set
(Set) individual attributes of events on the scheduler.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 53 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

1
2

4.1.3.2 ITask

namespace Smp
{
namespace Services
{
/// Interface for Scheduler task.
class ITask : public virtual IEntryPoint
{
public:
/// Get all entry points.
virtual EntryPointCollection GetEntryPoints() = 0;

/// Add entry point.
virtual void AddEntryPoint (const IEntryPoint *entryPoint) = 0;
}i

This interface extends IEntryPoint to allow scheduling tasks. A Task is an ordered collection of entry
points. Entry points in a task will be executed in the order they have been added.

4.1.4 Event Manager

The event manager service provides a global notification mechanism. Components can register entry points
with a global event. Several pre-defined event types exist, but applications can define their own, specific
global events as well.

Remarks:

Although it is possible that any component triggers one of the pre-defined events by calling the
Emit () method, models shall not emit pre-defined events, but only user-defined events. To
prevent accidentally emitting pre-defined events, these have been put into a “namespace”, i.e. a
prefix string “Smp_" has been added. It is recommended that user events include a “namespace”
as well, for example “MyApp_MyEvent1”.

41.41 IEventManager

Both the event manager and the scheduler use and return event identifiers. Therefore, this type as well as
the InvalidEventId exception is defined outside of these two interfaces, but within the Services
namespace.

namespace Smp
{
namespace Services
{
/// Identifier of global event of scheduler or event manager service.
typedef Int64 EventId;

/// Invalid event identifier.
class InvalidEventId : public Smp::Exception
{
public:
/// Invalid event identifier.
const Int32 event;

InvalidEventId(
const Int32 _event) throw()
Smp: :Exception("InvalidEventId"),
event (_event) {}

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 54 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

The event manager itself provides methods to subscribe entry points to global events, and to unsubscribe
them later. In addition, user-defined event types can be defined using the GetEvent Id () method.

/// Name of Event Manager service.
const String8 SMP_EventManager = "Smp_EventManager";

/// This interface gives access to the Event Manager.
class IEventManager : public virtual IService
{
public:
/// Entry point is already subscribed.
class AlreadySubscribed : public Smp::Exception
{
public:
/// Name of event the entry point is already subscribed to.
String8 eventName;
/// Entry point that is already subscribed.
const IEntryPoint* entryPoint;

AlreadySubscribed (
String8 _eventName,
const IEntryPoint* _entryPoint) throw()
Smp: :Exception ("AlreadySubscribed"),
eventName (_eventName),
entryPoint (_entryPoint) { ... }
bi

/// Entry point is not subscribed.
class NotSubscribed : public Smp::Exception
{
public:
/// Name of event the entry point is not subscribed to.
String8 eventName;
/// Entry point that is not subscribed.
const IEntryPoint* entryPoint;

NotSubscribed(
String8 _eventName,
const IEntryPoint* _entryPoint) throw()
Smp: :Exception ("NotSubscribed"),
eventName (_eventName),
entryPoint (_entryPoint) { ... }
bi

/// Get event identifier.
virtual EventId GetEventId(String8 eventName) = 0;

/// Subscribe entry point.

virtual void Subscribe (
const EventId event,
const IEntryPoint *entryPoint) throw (
Smp::Services::InvalidEventId,
Smp::Services::IEventManager: :AlreadySubscribed) = 0;

/// Unsubscribe entry point.
virtual void Unsubscribe (
const EventId event,
const IEntryPoint *entryPoint) throw (
Smp: :Services::InvalidEventId,
Smp: :Services: :IEventManager: :NotSubscribed) = 0;

/// Emit a global event.
virtual void Emit (const EventId event) throw (
Smp::Services::InvalidEventId) = 0;

bi

Components can register entry points with events, define and emit events.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 55 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2
41.4.2 Predefined Event Kinds
namespace Smp
{
namespace Services
{
const String8 SMP_LeaveConnecting = "Smp_LeaveConnecting";
const String8 SMP_EnterInitialising = "Smp_EnterInitialising";
const String8 SMP_Leavelnitialising = "Smp_LeaveInitialising";
const String8 SMP_EnterStandby = "Smp_EnterStandby";
const String8 SMP_LeaveStandby = "Smp_LeaveStandby";
const String8 SMP_EnterExecuting = "Smp_EnterExecuting";
const String8 SMP_LeaveExecuting = "Smp_LeaveExecuting";
const String8 SMP_EnterStoring = "Smp_EnterStoring";
const String8 SMP_LeaveStoring = "Smp_LeaveStoring";
const String8 SMP_EnterRestoring = "Smp_EnterRestoring";
const String8 SMP_LeaveRestoring = "Smp_LeaveRestoring";
const String8 SMP_EnterExiting = "Smp_EnterExiting";
const String8 SMP_EnterAborting = "Smp_EnterAborting";
const String8 SMP_EpochTimeChanged = "Smp_EpochTimeChanged";
const String8 SMP_MissionTimeChanged = "Smp_MissionTimeChanged";
const EventId SMP_LeaveConnectingId = 1; ///< Leave Connecting state.
const EventId SMP_EnterInitialisingId = 2; ///< Enter Initialising state.
const EventId SMP_LeavelInitialisingId = 3; ///< Leave Initialising state.
const EventId SMP_EnterStandbyId = 4; ///< Enter Standby state.
const EventId SMP_LeaveStandbyId = 5; ///< Leave Standby state.
const EventId SMP_EnterExecutingId = 6; ///< Enter Executing state.
const EventId SMP_LeaveExecutingId = 7; ///< Leave Executing state.
const EventId SMP_EnterStoringId = 8; ///< Enter Storing state.
const EventId SMP_LeaveStoringId = 9; ///< Leave Storing state.
const EventId SMP_EnterRestoringId = 10; ///< Enter Restoring state.
const EventId SMP_LeaveRestoringId = 11; ///< Leave Restoring state.
const EventId SMP_EnterExitingId = 12; ///< Enter Exiting state.
const EventId SMP_EnterAbortingId = 13; ///< Enter Aborting state.
const EventId SMP_EpochTimeChangedId = 14; ///< Epoch time has changed.
const EventId SMP_MissionTimeChangedId = 15; ///< Mission time has changed.
}
}

The Event Manager supports some global event names and ids defined for state changes of the simulation
environment, or for a modified epoch or mission time. The state transition events clearly indicate in their
names whether they are emitted when entering the corresponding state, or when leaving it.

The events indicating changes in either mission or epoch time are raised after the corresponding time has
been changed, so that an immediate call to the time keeper service will return the new epoch or mission

time, respectively.

© EUROPEAN SPACE AGENCY, 2005

File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 56 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

4.2 Optional Services

An SMP2 compliant simulation environment may support the following mechanisms and services.
Note: This section lists optional services a simulation environment might choose to provide. These services

are optional. However, if the simulation environment chooses to implement a functionality described in this
section, then it shall use the specified semantics and the corresponding mapping into the target platform.

4.2.1 Resolver

Components can use the Resolver to resolve named references to components. References can either be
specified using a fully qualified path, or using a path relative to some other component.

4.2.1.1 IResolver

namespace Smp
{
namespace Services
{
/// Name of Resolver service.
const String8 SMP_Resolver = "Smp_Resolver";

/// This interface gives access to the Resolver.
class IResolver : public virtual IService

{

public:
/// Resolve reference to component via absolute path.
virtual IComponent* ResolveAbsolute (String8 absolutePath) = 0;

/// Resolve reference to component via relative path.
virtual IComponent* ResolveRelative (
String8 relativePath,
IComponent* sender) = 0;
}i

Components can use the Resolver to resolve references to other components by name.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 57 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

5. METAMODEL

This section describes the mapping of all relevant SMP2 Metamodel elements into ISO/ANSI C++. The
exact definition of this mapping is essential in order to allow transforming modelling information stored in
an SMDL Catalogue into ISO/ANSI C++ code in a unique way.

5.1 Overview

The C++ mapping of the SMP2 Metamodel produces code fragments, complete files or directories
depending on the kind of Element mapped. The following description of the SMP2 Metamodel mapping
uses a template like notation to describe the code fragments or files in a generic way.

5.1.1 Placeholders

Non-general information coming out of the Catalogue, like names or types, is mapped by placeholders.
Placeholders are encased with the ‘$’ symbol. As an example the placeholder $Component . Name$ shall
be replaced by the actual name of the component.

5.1.2 Coloring and Font Schema

The coloring schema of the mapping description uses blue for C++ keywords, black for the rest of the
compiled code and green for a comment. The Font of the mapped code is Courier.

Example:

// An Smp.Int32 is a 32 bit signed Integer type:
typedef signed int Int32;

5.1.3 Generation of type Identification

The expression TypeName () delivers the fully qualified name of a type. Used in header files the qualified
name will be the type name plus preceding nesting namespaces.

Example:

TypeName ($Operation.Type$)

with an operation of return type My Type defined in a nested namespace of a namespace may be replaced in
a header file by:

: :Namespacel: :NestedNamespace2: :MyType

With the using keyword, it is possible to write more readable source code, but at the risk of introducing
ambiguities due to naming conflicts, as it is possible and valid to use the same type name within different
namespaces. The namespace will be indicated by the using command prefixed with all namespaces the
namespace is nested in (if there are any). For the example above, this would look as follows:

// The used namespace chain the type is nested in is defined.
using namespace ::Namespacel::NestedNamespace?2;

After that, My Type can be referenced without a namespace prefix.

5.1.4 Optional and Selectable Code

Optional code is encased in brackets (‘[* and]’).

Selectable code fragments are separated by the ‘I’ separator.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 58 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2
Example:

// If embedded in a Class or Component set Visibility
[public: |protected: |private:]

This means that a visibility keyword may be set and one of the three possibilities can be chosen.
5.2 Core Elements

5.2.1 Simple Types

5.2.1.1 Identifier

The Identifier, respectively the Id attribute is not mapped into C++.

5.21.2 Name

The Name attribute is used for the name of a C++ equivalent of a mapped SMDL Type. Therefore C++
fields, operations, types such as structures and classes, and namespaces will be named according to the

Name attribute of the corresponding SMDL element in a catalogue.

5.21.3 Description

The Description attribute is not mapped to C++, but may be generated as a comment in the description
of a C++ equivalent of a mapped SMDL element.

5.21.4 UUID

The UUID attribute is not mapped to C++, but may be generated as a comment in the description of a C++
equivalent of a mapped SMDL Type.

5.2.2 XML Links

XML Links are used for XML files generated by SMDL. They are not mapped to C++.

5.2.3 Elements

5.2.3.1 Element

An Element is not mapped directly into C++, because it is not a stand-alone type, but a base type.
5.23.2 Named Element

A NamedElement is not mapped directly into C++, because it is not a stand-alone type, but a base type.
Nevertheless stand-alone child types of a NamedElement will use the inherited Name attribute for the
naming of their C++ equivalent (see 5.2.1.2 Name). The Description attribute is not mapped to C++,
but may be generated as a comment (see 5.2.1.3 Description).

5.23.3 Document

The document class is used for XML files generated by SMDL. It is not mapped to C++.

5.2.4 Metadata

Metadata is not mapped to C++, as it is only used for tools supporting the SMDL Model Development or

Model Integration processes.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 59 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

5.3 Core Types
5.3.1 Types

5.3.1.1 Visibility Element

AvVisibilityElement is not mapped directly into C++, because it is not a stand-alone type, but a base
type. Nevertheless stand-alone child types of a VisibilityElement will map the inherited
Visibility attribute to define their C++ access control as follows:

Table 5-1: Mapping of the Visibility attribute to ISO/ANSI C++ Access Control

Visibility attribute C++ Access Control
public public
protected protected
private private
package public

5.3.1.2 Type

A Type is not mapped directly into C++, because it is not a stand-alone type, but a base type.

5.3.1.3 Language Type

A LanguageType is not mapped directly into C++, because it is not a stand-alone type, but a base type.

5.3.1.4 Value Type

A ValueType is either mapped as a typedef toa SimpleType, asa C++ struct, or as an enum. See
5.3.2 (Value Types) for details.

5.3.1.5 Value Reference
A ValueReference is mapped as a typedef of a pointer to a ValueType

In case the Reference belongs to a Model (i.e. is a nested type), the Visibility is defined.

// If embedded in a Model set Visibility
[public: |protected: |private:]

typedef TypeName ($ValueReference.Type$)* $ValueReference.Name$;

Examples:

// Reference to a Simple Type
public:
typedef Smp::UInt8* RUINtS8;

// Reference to an Integer Type named MyInteger

private:
typedef MyInteger* RInteger;

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 60 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

1
2

5.3.2 Value Types

5.3.2.1 Primitive Type

All primitive types are mapped to basic ISO/ANSI C++ types, as shown in section 2.2.1.
5.3.22 Enumeration

An Enumeration is mapped as an ISO/ANSI C++ enum type. Each EnumerationLiteral is
mapped as C++ enum literal with value assignment. In addition, a static function is defined that registers
the enumeration and all its literals in the type registry.

In case the Enumeration belongs to a Model (i.e. is a nested type), the Visibility is defined. In this
case, the static function becomes a static method of the model with the same visibility as the type.

// If embedded in a Model set Visibility
[public: |protected: |private:]

enum S$Enum.Name$

{
SEnum.Literal[l].Name$ = S$Enum.Literal[l].Value$,
SEnum.Literal[2] .Name$ SEnum.Literal[2].Value$,

i

static void _Register_S$Enum.Name$ (Smp: :Publication::ITypeRegistry* registry)

{
/// Register type in type registry

5.3.2.3 Integer

An Integer type is mapped as a typedef to the primitive type it references, or to Smp: : Int32 if it
does not reference a type. The Maximum and Minimum attributes are not explicitly mapped, but can be
shown as comments in the code. In addition, a static function is defined that registers the integer type with
its limits in the type registry.

In case the Integer belongs to a Model (i.e. is a nested type), the Visibility is defined. In this case,
the static function becomes a static method of the model with the same visibility as the type.

// If embedded in a Model set Visibility
[public: |protected: |private:]

typedef [$Integer.Type$|Smp::Int32] $Integer.Name$;

static void _Register_S$Integer.Name$ (Smp::Publication::ITypeRegistry* registry)

{
/// Register type in type registry

5.3.24 Float

A Float type is mapped as a typedef to either Smp: :Float32 or Smp: :Float64. The Maximum,
Minimum, MaxInclusive, MinInclusive and Unit attributes are not mapped, but can be shown as
comments. In addition, a static function is defined that registers the float type with its limits in the type
registry.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 61 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

In case the Float belongs to a Model (i.e. is a nested type), the Visibility is defined. In this case,
the static function becomes a static method of the model with the same visibility as the type.

// If embedded in a Model set Visibility
[public: |protected: |private:]

typedef [$Float.Type$|Smp::Float64] S$Float.Name$;

static void _Register_S$Float.Name$ (Smp::Publication::ITypeRegistry* registry)
{
/// Register type in type registry

5.3.2.5 Array

An Array type is mapped as an ISO/ANSI C++ struct, not as a typedef of an array. This is because
an array cannot be used as return type of an operation in C++. In addition, a static function is defined that
registers the array type in the type registry.

In case the Array belongs to a Model (i.e. is a nested type), the Visibility is defined. In this case,
the static function becomes a static method of the model with the same visibility as the type.

// If embedded in a Model set Visibility
[public: |protected: |private:]

struct $Array.Name$

{
TypeName ($Array.IltemType$) internalArray[S$Array.Size$];

i

static void _Register_S$Array.Name$ (Smp::Publication::ITypeRegistry* registry)
{
/// Register type in type registry

5.3.2.6 String

A String type is mapped as an ISO/ANSI C++ struct with an internal fixed size array of type
Smp: : Char8. The size of the array is given by the Length attribute of the String, but extended by one
to ensure the terminating null character fits into the string. In addition, a static function is defined that
registers the string type in the type registry.

In case the String belongs to a Model (i.e. is a nested type), the Visibility is defined. In this case,
the static function becomes a static method of the model with the same visibility as the type.

// If embedded in a Class or Component set Visibility
[public: |protected: |private:]

struct $String.Name$

{
Smp::Char8 internalString[$String.Length$+1];

bi
static void _Register_$String.Name$ (Smp::Publication::ITypeRegistry* registry)

{
/// Register type in type registry

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 62 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

5.3.2.7 Structure

A Structure type is mapped as an ISO/ANSI C++ struct. Each field of the structure is mapped to a
field in C++. In addition, a static method is defined that registers the structure type in the type registry.

In case the Structure belongs to a Model (i.e. is a nested type), the Visibility is defined.

// If embedded in a Model set Visibility
[public: |protected: |private:]

struct $Structure.Name$

{
// Define the Fields of the Structure here

See 5.3.3.1 (Field)

// Register type in type registry
static void _Register (Smp::Publication::ITypeRegistry* registry);
bi

If a forward declaration is needed, this can be generated as follows:

// If embedded in a Model set Visibility
[public: |protected: |private:]

struct $Structure.Name$;

5.3.3 Typed Elements

5.3.3.1 Field

A Field is mapped to C++ as a member variable of a C++ struct or a C++ class.
e IncasetheField belongstoaClass oraModel the visibility is mapped.

e Incasethe Field belongstoa Structure the visibility is assumed to be public

// In case the field belongs to a Class or a Model set Visibility
[public: |protected: |private:]

// field of type value type.
TypeName ($Field.Type$) $Field.Name$;

5.3.3.2 Operation

An Operation that is not an Operator is mapped as an ISO/ANSI C++ method, while an Operator
is mapped as an ISO/ANSI C++ operator.

e If the Operation belongs to a ReferenceType (Interface or Model), it is declared
virtual in order to allow overwriting it.

e Ifthe Operation belongsto an Interface, it will be declared as pure virtual (“=0").

e If the Operation belongs to a Class or Model, the specified Visibility is defined. For
Interface and Structure, the Visibility is always public.

(TR L]

e If the Operation returns a ReferenceType, it will return by pointer (“*”), otherwise it will

return by value.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 63 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

// In case the Operation is embedded in a Class or Model
// the given Visibility will be set. Otherwise it will be public.
[public: |protected: |private:]

// In case the Operation is of type ReferenceType, it will return by pointer
// otherwise it will return by value.
// If the Operation is an Operator, it will be mapped to an operator.
[virtual] TypeName ($Operation.Type$) [*] [operator]

SOperation.Name$ (Parameter) [=0];

For the Parameter list, see 5.3.3.2.1 (Parameter).

5.3.3.2.1 Parameter

A Parameter is mapped to an argument of a C++ method or operator.
® An empty parameter list is mapped to void.

* A non-empty parameter list is mapped to a comma-separated list of arguments with optional type
modifier, type and name for each argument.

Table 5-2: Type Modifier depending on type and direction

Direction In Out InOut
ValueType const * *
ValueReference

ReferenceType const & * *

// For each Parameter:
[const] TypeName ($Parameter.Type$) [&] [*] S$Parameter.Name$

5.3.4 Values

Default values of fields are mapped into C++ using the appropriate mechanisms to initialise fields in a class
or structure. Their mapping into C++ is explained below.

5.3.4.1 Value

This base class is not directly mapped to C++.
5.3.4.2 Simple Value

A SimpleValue maps to a corresponding value in C++ (short, double, char, etc.).

Example:
Smp::Int32 myInt32Field = 123;
Smp: :Char8 myChar8Field = 'x';

A SimpleValue for an enumeration (which is stored as Smp::Int32) maps to the Name of the
EnumerationLiteral with the given Value.

Example:

enum MyEnum

{

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 64 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

literall = 0,
literal2 1

}i
MyEnum myEnumField = literall;

5.3.4.3 Array Value

An ArrayValue maps to an array of values.

Example:

struct MyPosition { Smp::Float64 internalArray[3]; }
MyPosition myArrayField = {{1.0, 2.0, 3.0}};

5.3.44 String Value

A StringValue maps to a string of characters (char).

Example:

struct MyString { Smp::Char8 internalString[21]; }
MyString myStringField = {"Hello World"};

5.3.4.5 Structure Value

A StructureValue maps to a value of a structure, which is a comma-separated list of field values
enclosed in “{“and “}”.

Example:
struct MyStruct
{
Smp::Int64 size;
Smp::Char8 text;
}i
MyStruct myStructField = { 1, 'x'};
5.3.4.5.1 Field Value

A FieldValue maps to a value of a field of a structure, class or model, which consists of the name, the

w__

assignment operator (“="), and the value. See Structure Value above for an example for a structure field.

5.3.5 Attributes

Attributes are not mapped to C++.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 65 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

1
2

5.4 SMDL Catalogues

5.4.1 A Catalogue Document
5.4.1.1 Catalogue

A Catalogue itself is not mapped to C++, but its name may be used as the name of a root directory for
files generated for elements in the catalogue.

5.4.1.2 Namespace

A Namespace is mapped to C++ namespace. As no code is generated for a namespace, every type
contained within a namespace will be wrapped by a C++ namespace definition. As namespaces may
contain nested namespaces, a C++ namespace may contain further namespaces.

namespace $Namespace.Name$

{
// Define nested namespaces and types

}

To avoid problems with circular includes of files for the definition of composed types, it may be necessary
to add forward declarations of Structures, Classes, Interfaces and Models. Further, it is
recommended to define each Structure, Class, Interface or Model in a dedicated header file, and
to provide the implementation of a Structure, Class or Model in a dedicated source file.

5.4.2 Classes
5.4.2.1 Class

A Class is mapped as a C++ class. In addition, a static method is defined that registers the class type in
the type registry.

// In case the Class is contained in a namespaces the Namespaces will be
// opened before the class definition and closed afterward.
[namespace S$namespace_1.Name$ {]

// If the Class 1is nested in a Model, the visibility is set.
[public: |protected: |private:]

// If the Class has a Base Class it will be inherited virtual and public.
class $Class.Name$ [: virtual public $Class.BaseClass.Name$]
{
// The Constructor and virtual Destructor are declared with the
// Visibility of the Class
public: |protected: |private:
$Class.Name$ (void);
virtual ~$Class.Name$ (void);

// If the Class has Fields, these will be declared:
See 5.3.3.1 (Field)

// If the Class has Operations, these will be declared virtual:
See 5.3.3.2 (Operation)

// If the Class has associations, these will be declared:
See 5.4.2.3 (Association)

// If the Class has Properties, these will be declared virtual:
See 5.4.2.2 (Property)

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 66 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

// Register type in type registry
static void _Register (Smp::Publication::ITypeRegistry* registry);

[}
5.4.2.2 Property

A Property is mapped as one or two ISO/ANSI C++ methods: One for a possible setter and one for a
possible getter.

e If the Property belongs to an Interface, Class or Model, it is declared virtual in order
to allow overwriting it.

e Ifthe Property belongs to an Interface, it will be declared as pure virtual (“=0”).

e If the Property belongs to a Class or Model, the specified Visibility is defined. For
Interface,the Visibility is always public.

e If the Property returns a ReferenceType, it will return by pointer (“*”

return by value.

), otherwise it will

// In case the Property is embedded in a Class or Model
// the given Visibility will be set. Otherwise it will be declared public.
[public: |protected: |private:]

// In case the Property is ReadOnly or ReadWrite:
[virtual] TypeName ($Property.Type$) [*] get_S$Property.Name$ () [=0];

// In case the Property is WriteOnly or ReadWrite:
[virtual] void set_S$Property.Name$ (TypeName ($Property.Type$) [*] value) [=0];

Note: In case a Property has an attached field, a code generator may generate an inline definition in a
header file giving access to this field.

// In case the Property is embedded in a Class or Model the given Visibility
// will be set.
[public: |protected: |private:]

// In case the Property is ReadOnly or ReadWrite:
[virtual] TypeName ($Property.Type$) [*] get_S$Property.Name$ ()
{
return $Property.AttachedField$;
}
// In case the Property is WriteOnly or ReadWrite:

[virtual] void set_$Property.Name$ (TypeName ($Property.Type$) [*] value)

{
SProperty.AttachedField$ = value;
}

5.4.2.3 Association
An Association is mapped to C++ as a member variable of a C++ class.
e Incasethe Association belongstoa Class or aModel the visibility is mapped.

e Incasethe Association mapstoaReferenceType, it will be defined as a pointer (“*”).

// Set Visibility

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page
Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

67 of 96
1
2

[public: |protected: |private:]

// Association of type reference.
TypeName ($SAssociation.Type$) [*] S$SAssociation.Name$;

5.4.3 Reference Types
5.4.3.1 Reference Type
A ReferenceType is mapped as a C++ class.

5.4.3.2 Interface

An Interface is mapped as an abstract C++ class, which means that every C++ method for any

Operation or Property of the Interface is declared pure virtual.

// An Interface is always contained in a Namespaces that will
// be opened before the interface definition and closed afterward.
namespace $namespace_1l.Name$

{

// In case the Interface has Base Interfaces these will be inherited

// virtual and public.
class $Interface.Name$
[: virtual public $Interface.BaselInterface_1.Name$, ...]

{

// If the Interface has Operations, these will be declared virtual

See 5.3.3.2 (Operation)

// If the Interface has Properties, these will be declared virtual

See 5.4.2.2 (Property)
}i

5.4.3.3 Model

A Model is mapped as a C++ class. For basic SMP2 compliance, the model is mapped as follows:

e The Model inherits the IModel interface.
e [f the Model has containers, is inherits the IComposite interface.
e If the Model provides interfaces, it will inherit these interfaces.
e If the Model has a base model, it inherits its implementation.
For full SMP2 compliance, the following holds in addition:
e The Model inherits the IManagedModel interface.
e If the Model has references, is inherits the IAggregate interface.
e [f the Model has event sources, it inherits the IEventProvider Interface.

e [f the Model has event sinks, it inherits the IEventConsumer Interface.

e If the Model has entry points, it inherits the IEntryPointPublisher Interface.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 68 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

// The namespaces the model is contained in is
// opened at the beginning of the definition and closed afterward:
namespace $namespace_1.Name$
{
// Inheritance:
// If the Model has a Base Class this is inherited virtual and public.
// If the Model provides Interfaces these will be inherited
// virtual and public.
class $Component.Name$:
virtual public Smp::IModel |
virtual public Smp::Management::IManagedModel
, virtual public Smp::IComposite]
, virtual public Smp::IAggregate]
, virtual public Smp::Management::IEventProvider]
, virtual public Smp::Management::IEventConsumer]
, virtual public Smp::Management::IEntryPointPublisher]
, virtual public $Model.Base.Name$]
, virtual public $Model.ProvidedInterface_1.Name$,...]

// In case the Model has nested types these are defined:
See 5.3.2 (Value Types)

// The Constructor and virtual Destructor are declared with the
// Visibility of the Model

protected: |private:

SModel .Name$ (void);

virtual ~$Model.Name$ (void);

public:

// If the Model has Operations, these are declared virtual:
See 5.3.3.2 (Operation)

// If the Model has Fields, these are declared:
See 5.3.3.1 (Field)

// If the Model has associations, these are declared:
See 5.4.2.3 (Association)

// If the Model has Properties, these are declared virtual:
See 5.4.2.2 (Property)

// If the Model has Entry Points, they will be declared:
See 5.4.3.3.1 (Entry Point)

// If the Model has Event Sources, they will be declared:
See 5.4.4.2 (Event Source)

// If the Model has Event Sinks, they will be declared:

See 5.4.4.3 (Event Sink)
}i

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 69 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

5.4.3.3.1 Entry Point

An Entry Point is mapped to the IEntryPoint interface. The model has to ensure that an
implementation is available when other components call the handler of the entry point. The Entry
Point is mapped public.

public:
Smp: :IEntryPoint* $EntryPoint.Name$;

5.4.3.3.2 Container

A Container is mapped to the IContainer interface. The model has to ensure that an implementation
is available when other components access the container. The Container is mapped public.

public:
Smp::IContainer* $Container.Name$;

5.4.3.3.3 Reference Collection

A Reference pointing to a ReferenceCollection is mapped to the IReference interface. The
model has to ensure that an implementation is available when other components access the reference. The
Reference is mapped public.

public:
Smp: :IReference* $Reference.Name$;

5.4.4 Events

5.4.4.1 Event Type

An event type itself is not mapped to C++, as the event notification mechanism uses an untyped argument
to pass a value with each event. However, the event type is used to ensure that event sinks and event
sources are only connected if they are of the same event type.

5.44.2 Event Source

An EventSource is mapped to the IEventSource interface. The model has to ensure that an
implementation is available when other components access the event source. The EventSource is
mapped public.

public:
Smp: :IEventSource* S$EventSource.Name$;

5.4.4.3 Event Sink

An EventSink is mapped to the IEventSink interface. The model has to ensure that an
implementation is available when other components access the event sink. The Event Sink is mapped
public.

public:
Smp::IEventSink* SEventSink.Name$;

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 70 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

1
2

5.5 SMDL Packages

5.5.1 A Package Document
5.5.1.1 Package

A Package is a Document that holds an arbitrary number of Implementation elements. Each of
these implementations references a type in a catalogue that shall be implemented in the package.

The C++ mapping of a Package is a static or dynamic library providing an implementation for each of the
Implementation elements, To make these types available for later use, many of them need to be
registered: For each model, a factory needs to be registered, while value types are registered in the type
registry. This registration of types shall be done from a standardised Initialise () function. In a
corresponding Finalise () function, memory can be released. To avoid duplicate symbols in the linker,
these functions shall contain the name of the package as well.

extern "C"
{
/// Initialise function for static package.
bool InitialiseS$SPackage.Names (
Smp: :IDynamicSimulator* simulator,
Smp: :Publication::ITypeRegistry* typeRegistry);

/// Finalise function for static package.
bool Finalise$Package.Name$ ();

For a dynamic library (Dynamic Link Library (DLL) on the Microsoft Windows OS, or Dynamic Shared
Object (DSO) on the Unix OS), two additional functions that do not include the name of the package shall
be defined as well, as global functions in dynamic libraries do not create naming conflicts at link time.
These Initialise () and corresponding Finalise () functions shall call the functions including the
package name. As a package may reference other packages as a Dependency, which indicates that a type
referenced from an implementation in the package requires a type implemented in the referenced package,
the initialise and finalise functions of these dependencies shall be called as well.

There are no rules on the order in which packages are initialised, as the type registration process via
Universally Unique Identifiers (Uuids) does not introduce dependencies on the order. However, the
initialise and finalise functions may get called several times during initialisation (e.g. when referenced from
more than one package), so the implementation needs to ensure that types are only registered once, and
memory is released only once as well.

#ifdef WIN32

#define DLL_EXPORT __ declspec(dllexport)
#else

#define DLL_EXPORT

#endif

extern "C"
{
/// Initialise function for dynamic package.
DLL_EXPORT bool Initialise(
Smp: :IDynamicSimulator* simulator,
Smp: :Publication::ITypeRegistry* typeRegistry);

/// Finalise function for dynamic package.
DLL_EXPORT bool Finalise();

Note that binary distribution of models is typically only possible when using the identical OS as well as the
identical C++ compiler for all models as well as for the simulation environment.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 71 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

5.5.1.2 Implementation

An Implementation selects a single Type from a catalogue for a package. For the implementation, the
Uuid of the type is used, unless the type is a Model: For a model, a different Uuid for the implementation
can be specified, as for a model, different implementations may exist in different packages.

When the Implementation points to a Model (via its Type link), a corresponding class factory has to
be registered with the dynamic simulator (IDynamicSimulator) using the RegisterFactory ()
method. This class factory uses the Uuid of the Model (as specification identifier) as well as the Uuid of
the Implementation (as implementation identifier). This allows registering more than one
implementation for a model definition in a Catalogue.

When the Implementation points to a ValueType (via its Type link), the corresponding user-
defined value type has to be registered in the type registry (ITypeRegistry). This is done by calling the
global register function (for Enumeration, Integer, Float, Array, String) or method
(Structure, Class) of the type.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 72 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

This Page is Intentionally left Blank

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 73 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

6. PUBLICATION

SMP2 Models can publish their fields, operations and properties to a publication receiver (typically the
simulation environment) by calling the operations declared in the IPublication interface that is
provided by the simulation environment when calling the model’s Publish () method. For every field,
operation, property or parameter, a type needs to be specified during publication. As C++ does not have a
type reflection mechanism, the C++ implementation of publication provides a type registry.

Therefore, the C++ implementation of publication is split into two major parts:

1. It allows registering user-defined types using their unique type identification (UUID).

2. It allows publishing fields, operations and properties of models.
Fields are published to allow store and restore of their values (state), to show them at run-time (view),
and to support dataflow based simulation (input/output). Operations and properties are published to
support their use in script files. As this is limited to value types, only these are published into the type

registry. Consequently, only properties of value types, and operations that only use value types for their
parameters and return values can be published using the ITPublication interface.

6.1 Type Registry

The Simulation Environment has to provide a single Type Registry that provides the following operations
to the models:

e Asetof Add. .. () operations to register user-defined types.
e The GetType () operation to query for already registered types.

A model has to register the types of its fields, operations, parameters and properties before it can publish
these features. A type is basically registered by its name, description and UUID. For complex types,
additional information (e.g. enumeration literals, or fields of a structure) is added. As the UUID of a type
must be unique, there can be only one type registered under a given UUID. In case two models have fields
of the same type, the type registry will take care of avoiding a double registration.

The type registry provides the following operations to add types to it:

AddFloat Registers a user-defined Float taking the minimum, maximum, the inclusive
flags and the unit name as additional publication attributes.

AddInteger Registers a user-defined Integer taking the minimum and maximum values as
additional publication attributes.

AddEnumeration Registers a user-defined Enumeration, taking the size of the memory
enumeration as additional publication attribute. The enumeration literals have to
be added in subsequent calls to the returned IEnumerationType interface.

AddArray Registers a user-defined Array, taking the item type, item size and the array size
as additional publication attributes.

AddString Registers a user-defined String, taking the string size as additional publication
attribute.
AddStructure Registers a user-defined St ructure. The fields of the structure have to be added

in subsequent calls to the returned IStructureType interface.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 74 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev
AddClass Registers a user-defined Class, taking the type of a potential base class as

additional publication attribute. The fields of the class have to be published in
subsequent calls of the returned IClassType interface.

Each of these operations returns an instance of IType, or a derived interface.

6.1.1 IType

The IType interface is the base interface for all types that can be registered in the type registry. It is
returned when registering a Float, Integer, Array or String type. The IType interface provides a
method to query the Universally Unique Identifier (UUID) for the type (GetUuid ()), and a function to
publish a field of this type (Publish ()) against a publication receiver. As the pre-defined types are
represented by instances of IType in the type registry as well, the interface provides a convenience
method that returns the simple type represented by the type, or ST_None for user-defined types.

namespace Smp

{
// Forward declaration for circular references.
class IPublication;

namespace Publication
{
/// This base interface defines a type in the type registry.
class IType : public virtual Smp::IObject
{
public:
/// Get simple type that this type describes.
virtual Smp::SimpleTypeKind GetSimpleType () const = 0;

/// Get Universally Unique Identifier of type.
virtual const Smp::Uuid GetUuid() const = 0;

/// Publish an instance of the type against a receiver.
virtual void Publish(
IPublication *receiver,
Smp::String8 name,
Smp::String8 description,
void *address,
const Smp::Bool view,
const Smp::Bool state,
const Smp::Bool input,
const Smp::Bool output) = 0;
}i

}

Inheritance Diagram:

Smp:lObject

T

smp:Publication:Type
smp:Publication: | Enume rationType smp:Publication:|StructureType

I

Smp:Publication:|ClassType

Figure 6-1: IType Interface

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page
Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

75 of 96
1
2

6.1.1.1 GetSimpleType

Smp::SimpleTypeKind GetSimpleType() const;

Returns the simple type represented by the type.
Parameters:
None.

Returns:

This method returns the simple type that is represented by the type, or ST_None if the type does

not represent a simple type, but a user-defined type.
Exceptions:

None.
Remarks:

None.

6.1.1.2 GetUuid

const Smp::Uuid GetUuid() const;

Returns the Universally Unique Identifier of the type.
Parameters:

None.
Returns:

The Universally Unique Identifier of the type.
Exceptions:

None.
Remarks:

None.

6.1.1.3 Publish

virtual void Smp::Publish(
Smp::IPublication* receiver,
Smp::String8 name,
Smp::String8 description,
void* address,
const Smp::Bool view,
const Smp::Bool state,
const Smp::Bool input,
const Smp::Bool output);

Publishes a field of this type against a publication receiver.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc

SMP 2.0 C++ Mapping Page 76 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2
Parameters:
receiver Publication receiver to publish field against.
name Name of the published field.
description Description of the published field.
address Address of the published field.
view Defines whether the field shall be visible in the simulation environment.
state Defines whether the field shall be stored and restored by the simulation
environment.
input Defines whether the field is an input field.
output Defines whether the field is an output field.
Returns:
Void.
Exceptions:
None.
Remarks:
None.

6.1.2 IEnumerationType

The IEnumerationType interface inherits from the IType interface.

It is returned after registering an

enumeration type and provides a function to specify the literals of the registered enumeration type. As
publication attributes the name, the description and the value of each literal have to be specified.

namespace Smp
{
namespace Publication
{
/// This interface defines a user defined enumeration
class IEnumerationType : public virtual IType
{
public:
virtual void AddLiteral(
Smp::String8 name,
Smp::String8 description,

const Smp::Int32 value) = 0;

Inheritance Diagram:

smpzlOhject

T

Smp:Publication:Type

|

Smp:Publication:IEnumerationType

Figure 6-2: IEnumerationType Interface

File: SMP 2.0 Cpp Mapping - 1.2.doc

© EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 77 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

1
2

6.1.2.1 AddLiteral

void AddLiteral (Smp::String8 name,
Smp::String8 description,
const Smp::Int32 value);

Add a literal to a registered enumeration type.
Parameters:
name Name of the published literal.
description Description of the published literal.
value Integer value of the published literal.
Returns:
Void.
Exceptions:
None.
Remarks:

This information allows showing enumerations using their associated literals rather than their
integer values.

6.1.3 IStructureType

The IStructureType interface inherits from the IType interface. It is returned after registering a
structure type and provides a function to specify the fields of the registered structure type. Before a field
can be added the type of the field must be registered, and passed to the AddField () method.

namespace Smp
{
namespace Publication
{
/// This interface defines a user-defined structure.
class IStructureType : public virtual IType
{
public:
virtual void AddField(
Smp::String8 name,
Smp::String8 description,
const Smp::Uuid typeUuid,
const Smp::Int64 offset,
const Smp::Bool view = true,
const Smp::Bool state = true,
const Smp::Bool input = false,
const Smp::Bool output = false) = 0;

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping
Doc Ref EGOS-SIM-GEN-TN-0102
Date 28 October 2005

Page 78 of 96
Issue 1
Rev 2

Inheritance Diagram:

Smp:lObject

T

amp:Publication: Type

|

Smp:Publication:|StructureType

|

Smp:Publication:ClassType

Figure 6-3: IStructureType Interface

6.1.3.1 AddField
void AddField(Smp::String8 name,

Smp::String8 description,
const Smp::Uuid typeUuid,
const Smp::Int64 offset,
const Smp::Bool view = true,
const Smp::Bool state = true,
const Smp::Bool input = false,
const Smp::Bool output = false);

This method adds a field to a registered structure type.

Parameters:
name Name of the published field.
description Description of the published field.
typeUuid Uuid of the type of the published field.
offset Offset of field (in bytes) in the structure.
view Defines whether the field shall be visible in the simulation environment.
state Defines whether the field shall be stored by the simulation environment.
input Defines whether the field is an input field.
output Defines whether the field is an output field.
Returns:
Void.
Exceptions:
None.
Remarks:
None.

File: SMP 2.0 Cpp Mapping - 1.2.doc

© EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 79 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

6.1.4 IClassType

The IClassType interface inherits from the IStructureType interface, but does not add new
methods. It is only used to ensure that only classes can be specified as base classes in AddClass ().

namespace Smp
{
namespace Publication
{
/// This interface defines a user defined class.
class IClassType : public virtual IStructureType
{
}i

6.1.5 ITypeRegistry

This interface provides methods for the registration of user-defined types, and to find out whether a type
with a given Uuid has been registered.

6.1.5.1 AlreadyRegistered

This exception is thrown when a Uuid is used that has been used for an existing type in the type registry
already. This can happen as well when trying to register the same type again.

namespace Smp
{
namespace Publication
{
class AlreadyRegistered : public Smp::Exception
{
public:
/// Name of new type that cannot be registered.
String8 name;
/// Type that uses the same Uuid already
IType* type;

AlreadyRegistered(String8 _name, IType* _type);
}i

6.1.5.2 NotRegistered

This exception is thrown when a Uuid is used in the publication process that has not been registered in the
type registry before.

namespace Smp

{

namespace Publication

{
class NotRegistered : public Smp::Exception
{
public:
/// Uuid that does not correspond to a registered type.
Uuid uuid;

NotRegistered (Uuid _uuid);
bi

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 80 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2
namespace Smp
{
namespace Publication
{
/// This interface defines a registration mechanism for user types.
class ITypeRegistry
{
public:
/// Returns a type by its simple type kind.
virtual IType *GetType(const SimpleTypeKind type) const = 0;
/// Returns a type by universally unique identifier.
virtual IType *GetType (const Uuid typeUuid) const = 0;
/// Add a float type to the registry.
virtual const IType *AddFloatType (
String8 name,
String8 description,
const Uuid typeUuid,
const Float64 minimum,
const Float64 maximum,
const Bool minInclusive,
const Bool maxInclusive,
String8 unit,
const SimpleTypeKind type = ST_Float64) throw (AlreadyRegistered) = 0;
/// Add an integer type to the registry.
virtual const IType *AddIntegerType (
String8 name,
String8 description,
const Uuid typeUuid,
const Int64 minimum,
const Int64 maximum,
const SimpleTypeKind type = ST_Int32) throw (AlreadyRegistered) = 0;

/// Add an enumeration type to the registry.
virtual IEnumerationType *AddEnumerationType (
String8 name,
String8 description,
const Uuid typeUuid,

const Intl6 memorySize) throw (AlreadyRegistered) = 0;
/// Add an array type to the registry.
virtual const IType *AddArrayType (

String8 name,

String8 description,

const Uuid typeUuid,

const Uuid itemTypeUuid,

const Int64 itemSize,

const Int64 arrayCount) throw (AlreadyRegistered) = 0;
/// Add a string type to the registry.
virtual const IType *AddStringType (

String8 name,

String8 description,

const Uuid typeUuid,

const Int64 length) throw (AlreadyRegistered) = 0;
/// Add a structure type to the registry.
virtual IStructureType *AddStructureType (

String8 name,

String8 description,

const Uuid typeUuid) throw (AlreadyRegistered) = 0;
/// Add a class type to the registry.
virtual IClassType *AddClassType (

String8 name,

String8 description,

const Uuid typeUuid,

const Uuid baseClassUuid) throw (AlreadyRegistered) = 0;

File: SMP 2.0 Cpp Mapping - 1.2.doc

© EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 81 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue
Date 28 October 2005 Rev

1
2

6.1.5.3 GetType for SimpleTypeKind

IType *GetType(const SimpleTypeKind type) const;

Returns a type by its simple type kind.
Parameters:
type Simple type the type is requested for.
Returns:
Interface to the requested type.
Exceptions:
None.
Remarks:

This method can be used to map simple types to the IType interface, to treat all types identically.

6.1.5.4 GetType for Uuid

IType *GetType (const Uuid typeUuid) const;

Returns a type by universally unique identifier.
Parameters:
typeUuid Universally unique identifier for the requested type.
Returns:
Interface of the requested type, or null if no type with the registered Uuid could be found.
Exceptions:
None.
Remarks:

This method can be used to find out whether a specific type has been registered before.

6.1.5.5 AddFloat

const IType *AddFloat (String8 name,
String8 description,
const Uuid typeUuid,

const Float64 minimum,
const Float64 maximum,

const Bool minInclusive,
const Bool maxInclusive,
String8 unit,

const SimpleTypeKind type = ST_Float64)
throw (AlreadyRegistered);

Add a float type to the registry.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping 82 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 1
Date 28 October 2005 2
Parameters:

name Name of the registered type.

description Description of the registered type.

typeUuid Universally unique identifier of the registered type.

minimum Minimum value for float.

maximum Maximum value for float.

minlnclusive Flag whether the minimum value for float is valid or not.

maxInclusive Flag whether the maximum value for float is valid or not.

unit Unit of the type.

type Primitive type to use for Float type.
Returns:

Interface to new type.

Exceptions:

This method throws an exception of type AlreadyRegistered if the typeUuid has been used
by another type in the type registry already.

Remarks:

IManagedModel and IDynamicInvocation support fields, parameters and operations of
Float types via the ST_Float32 and ST_Float64 simple types, as a Float is mapped to
Smp::Float32 or Smp: :Float64.

6.1.5.6 Addinteger

const IType *AddInteger (String8 name,

String8 description,

const
const
const
const

throw (AlreadyRegistered);

Uuid typeUuid,

Int64 minimum,

Int64 maximum,

SimpleTypeKind type = ST_Int32)

Add an integer type to the registry.

Parameters:

name Name of the registered type.

description Description of the registered type.

typeUuid Universally unique identifier of the registered type.

minimum Minimum value for integer.

maximum Maximum value for integer.

type Primitive type that is used for Integer type.
Returns:

Interface to new type.

Exceptions:

This method throws an exception of type AlreadyRegistered if the typeUuid has been used
by another type in the type registry already.

File: SMP 2.0 Cpp Mapping - 1.2.doc

© EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 83 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2
Remarks:

IManagedModel and IDynamicInvocation support fields, parameters and operations of
Integer types via the ST_Int?? simple type, as an Integer is mapped to one of the
primitive types Smp::Int8§, Smp::Intl6, Smp::Int32, Smp::Int64,
Smp::UInt8, Smp::UIntl6 and Smp::UInt32.

6.1.5.7 AddEnumeration

IEnumerationType *AddEnumeration(String8 name,
String8 description,
const Uuid typeUuid,
const Intl6 memorySize)
throw (AlreadyRegistered);

Add an enumeration type to the registry.

Parameters:

name Name of the registered type.

description Description of the registered type.

typeUuid Universally unique identifier of the registered type.

memorySize Size of an instance of this enumeration in bytes. Valid values are 1, 2, 4, 8.
Returns:

Interface to new type that allows enumeration literals.
Exceptions:

This method throws an exception of type AlreadyRegistered if the typeUuid has been used
by another type in the type registry already.

Remarks:

Fields, parameters and operations of Enumeration types are supported by IManagedModel
and IDynamicInvocation via one of the ST_Int8, ST_Intl6, ST_Int32 or
ST_Int64 simple type, depending on their memory size.

6.1.5.8 AddArray

const IType *AddArray(String8 name,
String8 description,
const Uuid typeUuid,
const Uuid itemTypeUuid,
const Int64 itemSize,
const Int64 arrayCount)
throw (AlreadyRegistered);

Add an array type to the registry.

Parameters:
name Name of the registered type.
description Description of the registered type.
typeUuid Universally unique identifier of the registered type.
itemTypeUuid Uuid of the type of the array items.
itemSize Size of an array item in bytes.
arrayCount Number of elements in the array.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 84 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2
Returns:

Interface to new type.
Exceptions:

This method throws an exception of type AlreadyRegistered if the typeUuid has been used
by another type in the type registry already.

Remarks:

None.

6.1.5.9 AddString

const IType *AddString(String8 name,
String8 description,
const Uuid typeUuid,
const Int64 length)
throw (AlreadyRegistered);

Add a string type to the registry.

Parameters:
name Name of the registered type.
description Description of the registered type.
typeUuid Universally unique identifier of the registered type.
length Maximum length of the string.
Returns:

Interface to new type.
Exceptions:

This method throws an exception of type AlreadyRegistered if the typeUuid has been used
by another type in the type registry already.

Remarks:

None.

6.1.5.10 AddStructure

IStructureType *AddStructure(String8 name,
String8 description,
const Uuid typeUuid)
throw (AlreadyRegistered);

Add a structure type to the registry.

Parameters:

name Name of the registered type.

description Description of the registered type.

typeUuid Universally unique identifier of the registered type.
Returns:

Interface to new type that allows adding fields.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 85 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2
Exceptions:

This method throws an exception of type AlreadyRegistered if the typeUuid has been used
by another type in the type registry already.

Remarks:

None.

6.1.5.11 AddClass

IClassType *AddClass(String8 name,
String8 description,
const Uuid typeUuid,
const Uuid baseClassUuid)
throw (AlreadyRegistered);

Add a class type to the registry.

Parameters:
name Name of the registered type.
description Description of the registered type.
typeUuid Universally unique identifier of the registered type.

baseClassUuid Uuid of the base type of the registered class type, or a Uuid with all fields set
to O for none.

Returns:
Interface to new type that allows adding fields.
Exceptions:

This method throws an exception of type AlreadyRegistered if the typeUuid has been used
by another type in the type registry already.

Remarks:

None.

6.1.6 Pre-defined Simple Types

namespace Smp
{
namespace Publication
{
static const Uuid Uuid_Void {0,0,0,¢(" ", " ', v, v W, "o, "1, Ay)
static const Uuid Uuid_Char8 = {0,0,0,¢{ " "', ", ,'c'",'ht','a','r",'8"} };
static const Uuid Uuid_Bool = {0,0,0,¢(" ", ", ", ", B, "0, 0", "1"} };
static const Uuid Uuid_Int8 = {0,0,0,¢{(" ", ", o, I, 'nt, e, '8)
static const Uuid Uuid_Intle = {0,0,0,{ " "', ", ",'1",'n",'t",'1",'6"} };
static const Uuid Uuid_Int32 = {0,0,0,¢{ " ", ", ", I, 'n", ", "'3",'2"} };
static const Uuid Uuid_Int64 = {0,0,0,¢{(" ", ", ",'I",'n","t", "6, "4}),
static const Uuid Uuid_UInt8 = {0,0,0,¢{(" ", ", ,'u', ', 'n","t", '8} };
static const Uuid Uuid_UIntle6 = {0,0,0,¢{ " "', ', 'u','1','n*,'t",'1",'6"'} };
static const Uuid Uuid_UInt32 = {0,0,0,¢{ " "', ",'u','1','n","t","'3",'2"} };
static const Uuid Uuid_UInté64 = {0,0,0,¢{(" ', ",'U','1I",'n","t",'6", 4"} };
static const Uuid Uuid_Float32 = {0,0,0,{ " ','F','1','0','a','t","'3",'2"'} };
static const Uuid Uuid_Float64 = {0,0,0,{ " ','F','1','0','a"','t','6"',"'4"'} };
static const Uuid Uuid_DateTime = {0,0,0,{ 'D','a','t','e','T','"1", 'm','e'} };
static const Uuid Uuid_Duration = {0,0,0,{ 'D','u','r','a','t','i','o','n"} };
}
}

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 86 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

For each of the pre-defined simple types, a corresponding Universally Unique Identifier has been defined.
This allows to query for a simple type by its Uuid, using the GetType () method of the
ITypeRegistry.

Note:

The type registry must ensure that the pre-defined simple types are registered using their pre-defined Uuids.
6.2 Publication of Fields, Operations and Properties

6.2.1 IPublication

The IPublication interface provides a set of functions to publish fields of simple or used-defined type,
arrays, structures, and operations. Further, it supports models in implementing the IManagedModel and
IDynamicInvocation interfaces by providing an implementation for most of their functions. As the
IPublication interface is so complex, its functions are described in three sections.

6.2.1.1 Publication using the Type Registry

This section describes methods available to publish fields and operations of models by referencing types
from the type registry. These methods should be used to publish features with complex types. The complex
types are registered upfront in the type registry and are used in these methods by their Uuid. By using these
convenience methods the effort of publishing the structure of the used complex types is taken over by the
complex types themselves.

namespace Smp
{
class IPublication
{
public:
/// Give access to the global type registry.
virtual Publication::ITypeRegistry* GetTypeRegistry() const = 0;

/// Publish field of any type.
virtual void PublishField(
String8 name,
String8 description,
void* address,
const Uuid typeUuid,
const Bool view = true,
const Bool state = true,

const Bool input = false,
const Bool output = false) throw (
Smp: :Publication: :NotRegistered) = 0;

/// Publish an operation with complex return type.
virtual Publication::IPublishOperation* PublishOperation(
String8 name,
String8 description,
const Uuid returnTypeUuid) throw (
Smp: :Publication: :NotRegistered) = 0;

/// Publish a property.
virtual void PublishProperty(
String8 name,
String8 description,
const Uuid typeUuid,
const AccessKind accessKind) throw (
Smp: :Publication: :NotRegistered) = 0;

// Further methods are detailed below
//

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 87 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

6.2.1.1.1 GetTypeRegistry

Publication::ITypeRegistry* GetTypeRegistry () const;

Provide access to the global type registry.

Parameters:
None.

Returns:
Interface to type registry.

Exceptions:
None.

Remarks:

None.

6.2.1.1.2 Publish Field

void PublishField(
String8 name,
String8 description,
const void* address,
const Uuid typeUuid,
const Bool view = true,
const Bool state = true,
const Bool input = false,
const Bool output = false) throw (Smp::Publication::NotRegistered);

Publish a field of a registered type, including its memory address.

Parameters:
name Name of the published field.
description Description of the published field.
address Address of the published field.
typeUuid Uuid of the type of the published field.
view Defines whether the field shall be visible in the simulation environment.
state Defines whether the field shall be stored and restored by the simulation
environment.
input Defines whether the field is an input field.
output Defines whether the field is an output field.
Returns:
Void.
Exceptions:

This method throws an exception of type NotRegistered when no type has been registered
with the given Uuid.

Remarks:

None.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc
Doc Ref
Date

SMP 2.0 C++ Mapping Page

EGOS-SIM-GEN-TN-0102 Issue

28 October 2005 Rev

88 of 96
1
2

6.2.1.1.3 Publish Operation

Publication::IPublishOperation *PublishOperation(

String8 name,
String8 description,

const Uuid returnTypeUuid) throw (Smp::Publication::NotRegistered) ;

Publish an operation that has a return type of a registered type.

Parameters:
name Name of the published operation.
description Description of the published operation.

returnTypeUuid Uuid of return type of the published operation.

Returns:

Interface to ITPublishOperation to publish the parameters of the operation to.

Exceptions:

This method throws an exception of type NotRegistered when no type has been registered

with the given Uuid.

Remarks:

None.

6.2.1.1.4 Publish Property

void PublishProperty (

String8 name,
String8 description,
const Uuid typeUuid,

const AccessKind accessKind) throw (Smp::Publication::NotRegistered);

Publish a property of a registered type, including its access kind.

Parameters:
name Name of the published field.
description Description of the published field.
typeUuid Uuid of the type of the published property.
accessKind Access kind of the published property.
Returns:
Void.
Exceptions:

This method throws an exception of type NotRegistered when no type has been registered

with the given Uuid.

Remarks:

File: SMP

None.

2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 89 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2
6.2.1.2 Direct Publication

namespace Smp
{
/// Publication receiver.
class IPublication
{
public:
// Further methods are detailed above

//

/// Publish array of simple type.
virtual void PublishArray (
String8 name,
String8 description,

const Int64 count,

void* address,

const SimpleTypeKind type,
const Bool view = true,

const Bool state = true,

const Bool input = false,

const Bool output = false) = 0;

/// Publish array of any type.
virtual IPublication* PublishArray(
String8 name,
String8 description) = 0;

/// Publish structure.

virtual IPublication* PublishStructure (
String8 name,
String8 description) = 0;

// Further methods are detailed below
//

This section describes the methods available to publish fields of models without referencing types from the
type registry. These methods only use the pre-defined simple types (via the SimpleTypeKind
enumeration), and mechanisms for arrays (including strings, which are arrays of characters) and structures

(including classes, which are derived from structures).

These methods are typically not used by models, but by used-defined types in the type registry.

6.2.1.2.1 Publish Array of simple type
void PublishArray (

String8 name,
String8 description,
const Int64 count,
void* address,
const SimpleTypeKind type,
const Bool view = true,
const Bool state = true,
const Bool input = false,
const Bool output = false);

Publish a field that is an array of a simple type, including its memory address.

Parameters:
name Name of the published array field.
description Description of the published array field.
count Array size of the published array field.

© EUROPEAN SPACE AGENCY, 2005

File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 90 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2
address Address of the published array field.
type Type of the published array field (i.e. of each array element).
view Defines whether the field shall be visible in the simulation environment.
state Defines whether the field shall be stored and restored by the simulation
environment.
input Defines whether the field is an input field.
output Defines whether the field is an output field.
Returns:
Void.
Exceptions:
None.
Remarks:

This method works for all simple type kinds except for ST_None, which does not name a type.
Strings can be published using the simple type kind ST_Chars8.

6.2.1.2.2 Publish Array of user-defined type

IPublication* PublishArray (
String8 name,
String8 description);

Publish a field that is an array of a user-defined type.

Parameters:
name Name of the published array field.
description Description of the published array field.
Returns:

Interface to publication receiver to publish the elements of the array to.
Exceptions:

None.
Remarks:

The elements of the array have to be published separately using the returned IPublication
interface. This method only creates an empty node for the array.

6.2.1.2.3 Publish Structure

IPublication* PublishStructure (
String8 name,
String8 description);

Publish a field that is of a structure type.

Parameters:
name Name of the published array field.
description Description of the published array field.

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 91 of 96

Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2
Returns:

Interface to publication receiver to publish the fields of the structure to.
Exceptions:

None.
Remarks:

The field of the structure have to be published separately using the returned IPublication
interface. This method only creates an empty node for the structure.

As classes are derived from structure, they can be published with this method as well.
6.2.1.3 Overloaded Methods for fields of simple types

When using the PublishField () method to publish a field, a type has to be specified, together with a
void pointer to the memory address of the field. This implementation is not type-safe, as the compiler
cannot perform type checking. Therefore, the C++ implementation provides overloaded methods for most
types, which use a typed memory address (rather than a void pointer), and omit the specification of the type
(as it is known by the pointer type). However, due to the fact that Duration and DateTime are both
mapped to Int64 internally, no overloaded methods for these types can be provided.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 92 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

This section only details one of the available methods, as they only differ in the type of the memory
address. Except for DateTime and Duration (which are mapped to Int64), an overloaded, type-safe
method exists for each primitive type.

namespace Smp
{
class IPublication
{
public:
// Further methods are detailed above

//

/// Publish Char8 field.
/// @param name Field name.
/// @param description Field description.
/// @param address Field memory address.
/// @param view Show field in model tree.
/// @param state Include field in store/restore of simulation state.
/// @param input True if field is an input field, false otherwise.
/// @param output True if field is an output field, false otherwise.
virtual void PublishField(

String8 name,

String8 description,

Char8* address,

const Bool view = true,

const Bool state = true,

const Bool input = false,

const Bool output = false) = 0;

/// Publish a Bool field.
// ... use “Bool *address” for third parameter

/// Publish Int8 field.
// ... use “Int8 *address” for third parameter

/// Publish Intlé6 field.
// ... use “Intl6 *address” for third parameter

/// Publish Int32 field.
// ... use “Int32 *address” for third parameter

/// Publish Int64 field.
// ... use “Int64 *address” for third parameter

/// Publish UInt8 field.
// ... use “UInt8 *address” for third parameter

/// Publish UIntl6 field.
// ... use “UIntl6 *address” for third parameter

/// Publish UInt32 field.
// ... use “UInt32 *address” for third parameter

/// Publish UInt64 field.
// ... use “UInt64 *address” for third parameter

/// Publish Float32 field.
// ... use “Float32 *address” for third parameter

/// Publish Float64 field.
// ... use “Float64 *address” for third parameter

// Further methods are detailed below
//

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 93 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

6.2.1.3.1 Publish Field of Char8 type

void PublishField(
String8 name,
String8 description,
Char8* address,
const Bool view = true,

const Bool state = true,
const Bool input = false,
const Bool output = false);

Publish a field of Char8 type, including its memory address.

Parameters:
name Name of the published Char8 field.
description Description of the published Char8 field.
address Address of the published Char8 field.
view Defines whether the field shall be visible in the simulation environment.
state Defines whether the field shall be stored and restored by the simulation
environment.
input Defines whether the field is an input field.
output Defines whether the field is an output field.
Returns:
Void.
Exceptions:
None.
Remarks:

As this method uses a typed pointer, it does not need to specify the type of the field.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 94 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

6.2.1.4 Convenience Methods

The convenience methods allow an easy implementation of the IManagedModel and
IDynamicInvocation interfaces. As all information needed for the implementation of these methods
is published to the publication receiver, their implementation can be delegated to the publication receiver.
The semantics of the four convenience methods has not changed, so the reader is referred to the
corresponding interfaces for detailed descriptions of these methods.

namespace Smp
{
class IPublication
{
public:
// Further methods are detailed above

//

/// Get the value of a field which is typed by a system type.
virtual AnySimple GetFieldValue (String8 fullName) = 0;

/// Set the value of a field which is typed by a system type.
virtual void SetFieldValue (String8 fullName, AnySimple value) = 0;

/// Get the value of an array field which is typed by a system type.
virtual void GetArrayValue (

String8 fullName,

const AnySimpleArray values,

const Int32 length) throw (

Smp: :Management : : IManagedModel: :InvalidFieldName,

Smp: :Management: : IManagedModel: :InvalidArraySize) = 0;

/// Set the value of an array field which is typed by a system type.
virtual void SetArrayValue (

String8 fullName,

const AnySimpleArray values,

const Int32 length) throw (

Smp: :Management : : IManagedModel: :InvalidFieldName,

Smp: :Management : : IManagedModel: :InvalidArraySize,

Smp: :Management: : IManagedModel: :InvalidArrayValue) = 0;

/// Create request object.
virtual IRequest* CreateRequest (String8 operationName) =

I
o
~

/// Delete request object.
virtual void DeleteRequest (IRequest* request) = 0;

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

Doc SMP 2.0 C++ Mapping Page 95 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

6.2.2 |PublishOperation

The IPublishOperation interface provides functions to add parameters to a previously published
operation. As publication attributes the parameter name, description and type have to be specified.

namespace Smp
{
namespace Publication
{
// Forward declaration because of circular references.
class IType;

/// Publish operation parameters.
class IPublishOperation
{
public:
/// Virtual destructor.
virtual ~IPublishOperation() { }

/// Publish a parameter of an operation.
virtual void PublishParameter (
String8 name,
String8 description,
const Smp::Uuid typeUuid) throw (
Smp: :Publication: :NotRegistered) = 0;

6.2.2.1 Publish Parameter

void PublishParameter (
String8 name,
String8 description,
const Smp::Uuid typeUuid) throw (
Smp: :Publication: :NotRegistered) ;

Publish a parameter of an operation.

Parameters:
name Name of the published parameter.
description Description of the published parameter.
typeUuid Uuid of the type of the published parameter.
Returns:
Void.
Exceptions:

This method throws an exception of type NotRegistered when no type has been registered
with the given Uuid.

Remarks:

This method works for all types except for Uuid_Void, which does not identify a type.

© EUROPEAN SPACE AGENCY, 2005 File: SMP 2.0 Cpp Mapping - 1.2.doc

Doc SMP 2.0 C++ Mapping Page 96 of 96
Doc Ref EGOS-SIM-GEN-TN-0102 Issue 1
Date 28 October 2005 Rev 2

This Page is Intentionally left Blank

File: SMP 2.0 Cpp Mapping - 1.2.doc © EUROPEAN SPACE AGENCY, 2005

