
 Page 1�/9�

Model-Based Engineering Approach
for System Architecture Exploration

Julien Delange*, Christophe Honvault*, James Windsor*

*: European Space Agency, Keplerlaan 1, 2201AZ Noordwijk, The Netherlands
{firstname.lastname}@esa.int

Abstract: Safety-critical systems may contain a
large number of functions having different
security/safety levels and must ensure a continuous
operational state. It is of prime importance to avoid
errors propagation between system functions. One
may identify two main solutions to tackle that
problem. The first and classical solution relies on the
federated architecture where different hardware
nodes, each one executing one or several functions
having the same security/safety level, are
interconnected using communication channels. The
second solution emerged recently and leaded to the
definition of the integrated architecture where a
same hardware node is able to execute several
functions having different security/safety levels
thanks to dedicated hardware (as Memory
Management Unit) and software (as hypervisors).
These two architectures have their own advantages
and drawbacks in term of dependability, mass,
processing power, consumption, integration and
validation efforts, costs, etc. As a consequence,
choosing the architecture is difficult and system
engineers have to rigorously evaluate the
deployment strategy.

This paper presents an approach to
automate the integration of an implementation on
different architectures. As a result, it provides the
ability to deploy the same code on several nodes
(federated architecture) or on a partitioned system
(integrated architecture). For that purpose, the
TASTE tool-chain is extended to support the
deployment on XtratuM, a hypervisor that is ported
on space qualified processors. By using the new
tool-chain, designers can automatically produce
federated or partitioned systems and evaluate their
efficiency in terms of resources consumption,
performances as well as the impact in the
development process.

Keywords: IMA, AADL, code generation, XtratuM

1. Context & Background

Avionics or aerospace systems are mission or life
critical so that a failure may have catastrophic impact
(premature end of mission, loss of life, etc.). As a
result, these systems must be designed carefully in
order to ensure a correct behaviour when they are
operating. However, this has become extremely
difficult due to the large number of requirements
coming from different system domains (power,
thermal, data handling, GNC, etc.) and have to be
enforced in the implementation. As a consequence,
the number of system functions increases
significantly as well as interactions between these
functions. It therefore becomes very complicated to
evaluate the potential impact of modifications on the
complete system. This problem becomes particularly
difficult when a single system hosts functions with
different levels of safety or security.

To address these issues, two typical solutions are
proposed; the federated versus the integrated
deployments.

1.1. Federated deployment

The federated deployment consists in
separating system functions on different hardware
nodes, depending on their security or safety levels.
Using this solution, one computer will host functions
classified at high safety/security levels and another
executes functions that are less critical. By enabling
such a separation, functions are isolated one from
another, which reduces the potential impact of a
failure from one function to another classified at
higher levels.

Figure 1- Data acquisition/processing,
functional view

 Page 2�/9�

Figure 1 illustrates a basic system with two
functions: one that acquires data and another that
processes them (e.g. this can be a basic system that
acquires a sensor raw value and periodically stores
the corresponding engineering value). Figure 2
shows the deployment of these functions in a
federated architecture: each function is deployed on
a separated hardware node and the communication
between them uses a physical network.

Figure 2- Data acquisition/processing
 federated deployment

1.2 Integrated deployment

The integrated deployment collocates all
functions on the same computing node, no matter
their safety/security level. However, each function is
isolated from another using a dedicated separation
layer. To avoid any potential error propagation of an
error from one function to another, this separation
layer provides the following features:

1. Space isolation: each function is associated with
a single memory segment to store its data/code
and communication outside the memory
allocation is explicitly declared and granted.

2. Time isolation: each function has a unique time
slice to execute its tasks. A function therefore
cannot overrun its budget time so cannot impact
another.

As a consequence of the second deployment
option, the function can be allocated to a partition,
which is defined as a dedicated set of computing
resources (memory, CPU time, IO) allocated to a
specific function A separation kernel is responsible
for enforcing the temporal and spatial isolation of the
partitions. The approach is referred to as Time and
Space Partitioning (TSP).

The integrated deployment is illustrated in Figure
3: each function is bounded to a partition and the
communication uses the software bus provided by
the separation kernel.

1.3 Separation Kernels

Several partitioning systems solutions are
available for the design of embedded safety-critical
systems either under commercial conditions (e.g.
PikeOS [13] or VxWorks [14]) or open-source license
(as POK [6]). While most of existing products comply
to the Integrated Modular Avionics (IMA) ARINC653
[7] Application Programming (APEX) layer defined
for the avionics domain, a recent ESA study [12]
supported the port of the open source XtratuM
hypervisor to space qualified processors. XtratuM
can isolate several partition, each one executing one
or several functions, either directly (bare code) or on
top of a compatible operating system as RTEMS [9].
This approach is justified by the fact that RTEMS is a
product supported by ESA [15].

Figure 3- Data acquisition/processing
integrated deployment

2. Problem

When designing either an integrated or
federated architecture it is the responsibility of the
system architect/integrator to assess the impact of
the deployment strategy on the overall project. There
can be clear benefits in terms of mass, power and
volume for reducing the number of on-board
computing nodes. This benefit must be traded-off
against the increased complexity due to the
integrated functions.

This trade-off must be performed early in the
system lifecycle in order to initiate the subsystem
and equipment procurement. As a consequence the
system design is immature and shall need multiple
interactions before a coherent concept can be
agreed. The trade-off must include the following
properties:

• Independency of functional chains: can
functional chains be identified that are
independent or can be isolated such that they
can be partitioned. If there are too many
dependencies between functions, moving them
to a partitioned infrastructure shall introduce
delays caused by the inter-partition
communication. In addition, failure propagation

 Page 3�/9�

can be an issue for functionally dependent
application. How does a function react if a
function it is dependent on has failed? In a true
IMA system, functions must be independent of
each other. This must be accounted for in the
deployment strategy

• IO latency: in order to reduce the complexity of
the partition operating system the IO drivers are
usually implemented in a dedicated IO partition,
such that each IO device is ‘owned’ by a
partition. This means that a function cannot
directly access the IO and must communicate
via the intermediary IO partition. This will
introduce latency to the IO traffic not
experienced in a federated architecture.

• SW reuse: software originally intended for a
federated architecture must be adapted to such
an extent that the usefulness of reusing the
software must be questioned.

• Verification: each computing node, embedded
software, and the communication network
between the nodes must be individual verified
and validated. This can lead to an extensive test
campaign with schedule implications if changes
have to be introduced late in the lifecycle.

It is therefore essential that the system architect,
or the system integrator, is able to follow an
adequate process fully supported by tools in order to
identify which deployment strategy is preferable.

3. Approach

The proposed approach is model centric. It
relies in the description of the architecture of the
system using a unique modelling language.
However, a clear separation is maintained between
the application and the architectures of both IMA and
federated systems. This shall make possible to
easily adapt the application to any of the two
architectures.

In addition, non-functional requirements are
attached to the application. This includes the
dynamic characteristics (e.g. Worst Case Execution
Time) and expected behaviour (e.g. activation
frequency). These requirements are used to
automatically check the scheduling aspects at model
level on the two architectures using specialized
tools. This already makes possible first iterations
and refinements on the scheduling requirements and
eventually select one the two architectures very
early in the process.

Once the scheduling has been checked on
the two architectures, the configuration and
deployment code of the application on the two
architectures is automatically generated for a
dedicated target (e.g. PC/Linux workstation or
LEON/RTEMS board). The application can then be
executed on the target in order to validate the
scheduling in a representative environment.

Figure 4- Process architecture

4. Process definition & implementation

 The overall architecture of the proposed
process is illustrated in figure 4. It relies on the
Architecture Analysis and Design Language (AADL)
[2] to specify system architecture with its execution
constraints. Then, models are processed by
appropriate tools to validate system requirements
(such as schedulability) or produce system
implementation. By using the same specifications
during system development phases and relying on
automatic tools, we improve the development
process consistency and avoid traditional errors or
pitfalls (misuse of tools, manual error coding, etc.).

 We tailor this generic process for exploring
different architecture patterns, as illustrated in 5. We
separate specifications in two layers: one generic
that represents software aspects (tasks,
subprograms, data types, etc.) and another with
architecture-specific aspects. By doing so, we keep
the common part (the application) in models and
reuse it with platform-specific components. As
illustrated in 5, we tailor this process to study
federated and IMA architectures and investigate the
impact of selected architecture on software aspects.
 Next sections introduce the modelling
language (AADL) and then, explain its supports for
validating system requirements or generating the
implementation on different architectures.

AADL models

System
Analysis

Automatic
Implementation

Validation
report

Execution
traces

Compliance ?

 Page 4�/9�

Figure 5 - Tailoring the process

for architecture exploration

4.1. Overview of AADL
 The Architecture and Analysis Design
Language [2] (AADL) has been designed by the SAE
(Society of Automotive Engineers) and aims at
modelling systems architecture. It allows the
description of both software and hardware concerns
and focuses on the definition of clear block
interfaces. Models are expressed using a graphical
or textual interface.
 The AADL language [2] defines several
components categories: hardware, software and
hybrids. Hardware components are:
1. Processor: model the physical processor (e.g.:

x86 or LEON) and its associated operating
system (e.g. Linux or RTEMS[15]).

2. Virtual processor: separate the processor
into several parts, either for the hardware
(modelling several cores) or software (modelling
partitions) aspects.

3. Memory: model any memory in the system, from
RAM to ROM, or hard drives.

4. Bus: model a regular bus such as Ethernet.
5. Virtual bus: represent either part of a bus

(for example, modelling QoS aspects of a bus)
or software concerns (protocols, etc.).

6. Device: model any other device in the system
(sensor, actuator, etc...).

Software components are :
1. Process: as a UNIX process, represents an

address space where threads are executed.
2. Thread: as POSIX threads, supports

subprogram execution.

3. Subprogram: models instructions flow. It
represents a function or a procedure in a
language (e.g. C/Ada) executed by a thread.

4. Data: models either a data type (e.g. integer,
float, etc.) or a data value (shared variable, etc.).

 A special hybrid component (system)
aggregates all system components altogether and
so, makes the whole model.
 A component can contain other components,
in order to describe the hierarchy of the system. For
example, a process component may contain
several thread components.
 AADL artefacts are associated with properties
to represent specific aspects, such as timing
requirements (period/deadline of a task) or
constraints (size of a partition). The built-in standard
property sets address most system properties while
users can also add their own. AADL contains a set
of properties, which can be extended by the user.
 AADL components may use features, to
model communication interfaces with other
components. (For example, the arguments of a
function can be considered as features for an AADL
subprogram). Then, the connections section of
a component connects these features, describing
the data flow within the system architecture (For
example, connecting thread features to
subprogram features means that the data of the
thread are used as arguments in a function-call).

4.2. IMA and federated architectures modelling
 As AADL supports the modelling of both
software and hardware concerns and provides
extensions mechanisms, we can tailor it to capture
different architecture patterns. In that context, we
use or adapt it to represent IMA or federated
architectures.

 Modelling federated architectures does not
require specific pattern or properties and the built-in
AADL constructs provides everything that is
required:
1. Application concerns are represented using

several processes connected by buses.
2. Each process (application) is bound to a

processor (execution support) and a memory
(for storing code and data).

 On the other hand, describing IMA
architecture requires using specific modelling
patterns and properties to capture the
partitioning/isolation policy. For that purpose, we
tailor the language as follow:
1. AADL processor components are decomposed
into virtual processor. Processors represent
the isolation layer (separation kernel) with its time
isolation policy while virtual processors model
partitions environment. Application processes are

AADL model for software concerns

System Analysis & Implementation

Federated
system

IMA system

System behaviour differences

AADL model of
federated arch.

AADL model of
IMA arch.

 Page 5�/9�

no longer associated to a processor (a regular
OS) but to a virtual processor (a partition
execution environment) to describe allocation of
application over partitions.
2. AADL memory components are divided with
memory sub-components to model segments and
the space isolation policy. Processes (application)
are bound to these memory sub-components to
represent segment allocation within the partitioned
architecture and partitions isolation.

4.3. Validating scheduling from models
 As IMA architectures separate partitions with
timing isolation, analyzing their execution would
show its impact on application behaviour before
implementing the system. To do so, we rely on tools
that process AADL models and analyze system
properties related to timing requirements. They
provide the ability to validate scheduling concerns
using specific heuristic computations or just
simulation.
 In our process, this analysis effort is carried by
Cheddar [6], a scheduling validation tool. It already
supports several analysis techniques for federated
architecture and provides necessary features to
describe specific scheduling requirements using a
dedicated language. Thus, we can tailor Cheddar to
specify IMA timing requirements so that designers
can analyze the impact of the execution platform
(IMA or federated) on the application behaviour.

4.4. Code Generation
 Once system requirements (such as
scheduling) are validated at specification-level using
appropriate tools, implementation needs to be
created. Since producing the system by hand is
error-prone and could make the implementation
inconsistent with validated requirements, code is
produced from specifications with appropriate tools.
 For that purpose, our process relies on
Ocarina [8], an AADL toolsuite with code generation
functions that produces C or Ada code from models.
It already supports federated architectures by
generating POSIX-compliant code. On the other
hand, it needs to be tailored to support IMA specific
configuration directives and multi-layered
architectures (time/space isolation, inter/intra-
partition communications, etc.).
 For that reason, we modify Ocarina and add
IMA support for Xtratum [3] so that it can generate
implementation that targets both federated and IMA
systems with respect to their specific requirements.

4.5. Run-Time Support
 Generated code is then linked with a run-time
that supports application execution. System
developers choose an appropriate run-time platform
according to the expected architecture pattern.
Federated architecture are deployed on top of well-

known operating systems such as RTEMS [9] or RT-
Linux while IMA systems uses specific projects such
as XTratuM [3] or POK [5].

 As our study aims at studying the differences
of the integration of the same software architecture
on different architectures, we use two
representatives run-times. The federated
architecture (figure 6) is built with two nodes
executing RTEMS that communicate through a
SpaceWire link. The IMA deployment (figure 7) is
designed with two RTEMS instances on the same
processor using XtratuM [3] which isolates each one
in terms of time and space.

5. Case-Study & Results

5.1. Case-Study Specifications
 Our case-study deploys a producer/consumer
application on federated and IMA architectures. It
consists of two tasks, which timing properties are
reported in table 1:

1. One cyclic that produces data periodically
2. One sporadic triggered when receiving data

 Task 1 Task 2
Type Cyclic Sporadic
Period 100ms 100ms
Execution time 3ms 5ms

Table 1 - Timing requirements of each task

 Each task is bound to a separated process
and the difference between federated and IMA
deployment consists in few modelling variations:

1. Federated architecture associates each
process to a separate processor
connected through a SpaceWire bus to
transfer data, as depicted in figure 6.

2. IMA architecture collocates the two
processes on the same processor and
communication is performed using inter-
partition communication, as shown in figure 7.
Each partition has a fixed time slice of 200ms
to execute its associated application.

 This example clearly shows the difference
between these architectures patterns: the federated
uses a hardware-based isolation model (by using

Figure 6 - Federated deployment

Producer

RTEMS

Consumer

RTEMS

SpaceWire

 Page 6�/9�

different processors and hardware bus) while the
IMA relies on a software-based isolation mechanism
(the XtratuM [3] isolation layer).

Figure 7 - IMA deployment

5.2. AADL modelling
AADL models are separated in two parts:
1. Software concerns (deployment-agnostic)

describe application aspects: data types to be
used, tasks and processes. This is reused by all
architectures.

2. Deployment aspects describe the underlying
architecture that supports application execution.
One model is designed for each studied
architecture pattern.

 The software aspects are defined with two
AADL process components: one for the producer
and another for the consumer, each one containing
a thread component to execute the application
(subprograms). These two processes exchange data
using AADL ports connection. Figure 8 depicts
these aspects using the AADL graphical notation.

Figure 8 - AADL model of software aspects

 Then, the federated architecture is described
by adding two nodes connected through a bus. Each
node contains a processor component (hardware
processor and the execution runtime), a memory (to
store application code and data) and a device
(communication through the bus). Then, we
associate software concerns (processes and
connections) to the hardware architecture. This is
illustrated in Figure 9 that depicts the association
between the generic software components and
hardware components of the architecture.

 Deployment of the software architecture in an
IMA platform with AADL is illustrated in Figure 10.
Each hardware component is decomposed into sub-

components to represent the separation: the main
memory component is divided in two memory
segments, each one allocated to a separate partition
(process component). Similarly, the processor
component is divided into two virtual
processor components, each one representing a
partition runtime that supports application execution.
Finally, as we don’t use any bus, this hardware
architecture does not contain any device or bus: the
application connection is handled using the inter-
partitions communication layer provided by the
isolation kernel layer.

Figure 9 - Federated architecture model

with integration of software aspects

 Specific timing requirements are specified by
associating specific properties on the textual
notation of AADL components. Unfortunately, due to
a lack of place, it cannot be included in this article
but can be found on our main project website [1].

Figure 10 - IMA architecture model
with integration of software aspects

sender
task

receiver
task

Producer

RTEMS

Consumer

RTEMS

XTratum isolation layer

sender
process

receiver
process

receiver
runtime

receiver
segment

sender
device

Main memory Isolation kernel

sender
process

receiver
process

sender
device

receiver
device

receiver
runtime

SpaceWire bus

sender process receiver process

Software
aspects

Hardware
aspects

sender
segment

Software
aspects

Hardware
aspects

sender
device

sender
memory

receiver
memory

 Page 7�/9�

5.3. Scheduling validation
 Before implementing architectures, one
interest consists in validating some characteristics.
This provides the ability to check for potential error
early and avoid any re-engineering efforts due to late
design errors detection. Due to the specific
scheduling policies of studied architectures, one
concern is to validate timing requirements using
system specifications. For that purpose, the
proposed process simulates the architecture and
ensures timing constraints enforcements.

Figure 11 - Scheduling validation

of the federated architecture

 To do so, we rely on the Cheddar [6]
scheduling analysis tool. It processes system
specification and validate timing requirements either
by using feasibility tests (such as Rate Monotonic
Analysis) or simulating its execution according to
tasks specification (period, deadline, execution time)
and deployment constraints (scheduling algorithm,
processor, etc.).

Figure 12 - Scheduling validation

of the IMA architecture

 Scheduling diagrams produced by Cheddar
are shown on figure 11 (federated architecture) and
figure 12 (IMA architecture) and depict tasks
activation time. While tasks of the federated
architecture enforce their deadline as expected, the
one from the IMA architecture is delayed due to
partition timeslot. In fact, as partitions timeslots are
longer than tasks period, partitions switch avoid
tasks to be dispatched on time. In our case-study,

the sender task cannot send new data instance on
time because the second partition still own the
processing resource when it is supposed to be
activated.

5.4. Implementation Generation & Execution
 Once system specifications are analyzed, it is
of particular interest to compare them with the run-
time behaviour. For that purpose, we implement the
system using of automatic code generator, Ocarina
[7, 8], which is able to integrate the same application
code on different architecture.
 While Ocarina already supports federated
architectures since several years, its compliance
with IMA architecture was limited to POK [5], an
ARINC653-compliant run-time oriented for the
avionics domain. So, we tailor the Ocarina code
generation tools to support XtratuM [3], a hypervisor
that is able to execute and isolate several RTEMS
instance on the same processor. This deployment is
more representative of space-related applications.
 The implementation of the federated
architecture relies on RTEMS 4.8 for LEON2
processors. We also use a dedicated version that
supports the RASTA board and their associated
SpaceWire interfaces. On the other hand, the IMA
architecture uses the XtratuM 3.1 hypervisor with
RTEMS 4.8 as partition run-time (tailored to be
executed on top of XtratuM).
 Finally, to avoid timing issues due to the
instrumentation code, metrics are sent after system
execution. This is particularly important for the
federated architecture, where the standard output
uses the serial line and potentially consumes
significant processing resources.

Figure 13 - Tasks activation time during system

execution (federated deployment)

Sender 7980 8080 8180 8280 8380

Receiver 10810 10910 11010 11110 11210

Table 2 - Activation time of tasks
on federated deployment (in ms)

 Page 8�/9�

5.5. Tasks activation validation at execution
 Tasks activation times are reported in table 2
(Federated architecture) and table 3 (IMA
deployment). We also report them in figure 13 and
figure 14 in order to have a graphical overview of
timing differences between these two architectures.
 In the federated architecture (table 2 and
figure 13), there is a huge time delay between
activation of the producer and receiving by the
consumer. This time difference is due to the network
latency: the sender node must invoke additional
code to send the data through the SpaceWire
interface and the receiver must also invoke
networking driver code to retrieve fresh data
instance. While this introduces latency between data
production and consumption, each task enforces its
deadline.

Figure 14 - Tasks activation time during
system execution (IMA deployment)

Sender 1330 1430 1630 1630 1730

Receiver 1440 1840 2240 2640 3040

Table 3 - Activation time of tasks
on IMA deployment (in ms)

The IMA architecture (Table 3 and figure 14)
does not have this latency issue because tasks
communication is performed locally, using the
hypervisor. However, the partitioning policy has an
impact on tasks activation and may delay data
processing. In the current example, as each partition
is executed during 200ms, and thus, tasks execution
from idle partitions is delayed. Moreover, as the
partitions exchanged only one data, the receiving
partition receives one data instance (the fresher one)
when activated so that some data are lost. This
would be solved by using queuing ports.

 These preliminary results demonstrate that a
deployment strategy would have an impact over
application concerns and there is no ideal solution
that may solve every potential issue: if deadlines are
correctly enforced in the federated architecture,
network latency could be a problem when data must
be processed quickly. On the other hand, partitioned
architectures avoid network latency concerns but
may delay tasks activation, depending on the
partitioning policy.

Finally, it is also interesting to notice that
results obtained during execution are different from
the simulation. In consequence, if preliminary
validation is an important matter when designing
safety-critical architecture, inspecting the
implementation would still be mandatory.

5.5. Memory footprint analysis

Automatic implementation generation
provides the ability to retrieve metrics and evaluate
advantages and drawbacks of each deployment
strategy. In our case, we evaluate the memory
footprint and compare the cost of the implementation
on selected architectures.

 Size
Sender node 235124 bytes
Receiver node 234 916 bytes

Total 470 040 bytes

Table 4 - Memory footprint of binaries
 for the federated deployment

Table 4 and table 5 report the memory
footprints of our example on both federated and IMA
architectures. Binaries were compiled with the
RTEMS tool-chain (with GCC and its associated
tools) and stripped to remove useless symbols.

The results show that the lowest memory
footprint is obtained with the IMA architecture.
Indeed, each partition has an approximate size of
150 Kbytes while applications that target a federated
architecture as big as 230 Kbytes. This difference
comes from the run-time costs: binaries for federated
architectures have to embed device drivers code
and other layer that are either useless in the IMA
deployment (no required driver or function provided
by the isolation layer).

 Size
Sender partition 154308 bytes
Receiver partition 154756 bytes
Isolation kernel 85 268 bytes

Total 394 332 bytes

Table 5- Memory footprint of binaries
for the IMA deployment

This shows that IMA architectures present
great benefits compared to traditional run-time. A
lightweight memory footprint implies that produced
application will have less code to be reviewed and
so, it would reduce validation activities, reducing the
development effort and its associated costs.

 Page 9�/9�

6. Conclusions & Perspectives

A seamless process aiming at facilitating the

System architecture exploration has been defined.
The tools supporting that process have been
integrated and their use has been fully automated.
The approach has been validated through its
execution on a very simple application. As a result,
the analysis of different architectures for the
execution of an application is straightforward. The
proposed approach allows the identification of the
main drivers of the future implementations at an
early stage. This analysis can be moved forwards up
to the generation of code and its execution on a
representative platform. This execution is the
ultimate proof of the respect the timing requirements
and the only able to provide valid budget reports.

Thanks to the automation of verification and
generation tasks, the proposed process is
particularly adapted to the development of complex
systems using an incremental approach. After first
verifications and selections at model level, additional
verifications and adaptations can be easily
performed on a representative environment.

Further steps are still needed to completely
validate the approach. The process has been
developed and validated on an extremely simple
application having a limited number of requirements.
In a next step, we intend to apply the same process
to a Use Case more representative of complex
space applications that include safety or security
requirements. This will require the refinement of the
architectures of both IMA and federated systems.

The study case has selected XtratuM to
support the partitioning but other IMA solutions for
space applications exist or are currently developed
as VxWorks653 and PikeOS. These two products
could be supported in the future in order to enlarge
the exploration area.

ESA has initiated several studies (as
COrDeT [16]) and supports a PhD project (Definition,
realization and evaluation of a software reference
architecture for use in space applications [17]) via
the Networking/Partnering Initiative. These activities
are dealing with component models where the
modelling activities are focused on the functional
parts of the applications. The integration of these
models, describing the application software, with the
models describing the architecture of the execution
platform clearly appears of prime interest. This
should make possible to automatically generate
deployment solutions from the high-level definition of
the functions of the system. To this end, the
proposed process shall be extended to integrate
new models or tools able to transform the models
into AADL. Of course, the new process shall be able
to manage the complete set of requirements in order
to support their verification and ensure their
traceability.

Glossary

AADL Architecture Analysis & Design Language
IMA Integrated Modular Avionics
QoS Quality of Service
TASTE The Assert Set of Tools for Engineering

References

[1] TASTE: http://www.assert-project.net/taste
[2] AADL: http://www.aadl.info
[3] XTratuM: http://www.xtratum.org
[4] PolyORB-HI-C User Guide, 2007.
[5] POK: http://pok.safety-critical.net
[6] F. Singhoff, J. Legrand, L. Nana, and L. Marcé.

Cheddar : a flexible real time scheduling
framework. ACM, 11 2004.

[7] T. Vergnaud, B. Zalila and J. Hugues. Ocarina
documentation, see http://ocarina.enst.fr.

[8] J. Hugues, F. Kordon, L. Pautet, and T.
Vergnaud. A Factory To Design and Build
Tailorable and Verifiable Middleware. In
Proceedings of the Monterey Workshop 2005
on Networked Systems: realization of reliable
systems on top of unreliable networked
platforms.

[9] RTEMS: http://www.rtems.com
[10] ARINC653: http://www.computersociety.it/wp-

content/uploads/2008/08/ieee-cc-
arinc653_final.pdf

[11] James Windsor, Kjeld Hjortnaes, « Time and
Space Partitioning in Spacecraft Avionics »,
smc-it, pp. 13-20, Third IEEE International
Conference on Space Mission Challenges for
Information Technology, 2009.

[12] T. Pareaud, L. Planche, D. Mylonas et al.
“Securely Partitioning Spacecraft Computing
Resources: Validation of a Separation Kernel”,
Proceedings of the DASIA 2011 Conference.
DAta Systems In Aerospace. 17–20 May 2011.
San Anton, Malta.

[13] J. Almeida & M. Prochazka. “Safe and Secure
Partitioning with PikeOs: Towards Integrated
Modular Avionics in Space”. Proceedings of the
DASIA 2009 Conference, DAta Systems In
Aerospace, 26–29 May 2009, Istanbul, Turkey.

[14] WindRiver VxWorks 653 Platform.
http://www.windriver.com/products/platforms/saf
ety_critical_arinc_653/

[15] RTEMS Centre. http://rtemscentre.edisoft.pt
[16] J.L.Terraillon, A. Jung. Faster, Later, Softer:

COrDeT, a reference on-board software
architecture for spacecrafts, Proceeding of
ERTS 2010.

[17] M. Panunzio and T. Vardanega: ”A Component
Model for On-board Software Applications”.
Proc. of the 36th Euromicro Conference on
Software Engineering and Advanced
Applications (SEAA’10), September 2010 [109].

http://www.rtems.com/
http://rtemscentre.edisoft.pt/

